110
CS3

Modular Programming

Steffen Smolka
Spring 2018

Moog modular synthesizer

S Offc”
o ollo

ollo
O||O

(o){e){]

i OlO
10

Based in Trumansburg, NY, 1953-1971
Game changing! picked up by the Beatles, the Rolling Stones...

Review

Previously in 3110:

* Functions, data

* lots of language features

* how to build small programs

Today:

* language features for building /arge programs:
structures, signatures, modules

Scale

My solution to A1: 100 LoC

e OCaml: 200,000 LoC
* Unreal engine 3: 2,000,000 LoC
* Windows Vista: 50,000,000 LoC

http://www.informationisbeautiful.net/visualizations/million-lines-of-

code/

..can’t be done by one person
..no individual programmer can understand all the details

Modularity

Modular programming: code comprises
independent modules

— developed separately

— understand behavior of module in isolation

module 1 module 2

Java features for modularity

* classes, packages: organize identifiers (classes,
methods, fields, etc.) into namespaces

* interfaces: describe related classes

* public, protected, private: control what is visible
outside a namespace

* subtyping, inheritance: enables code reuse

OCaml features for modularity

* structures: organize identifiers (functions, values,
etc.) into namespaces

* signatures: describe related modules

* abstract types: control what is visible outside a
namespace

* functors, includes: enable code reuse

..the OCaml module system

Functional data structures

* aka persistent data structures
e Never mutate the data structure

* Old versions of the data structure persist and are
still usable

* Language implementation ensures as much
sharing as possible in memory

* |In lecture: stacks

* In lab: queues and dictionaries

STRUCTURES

module MyStack = struct
type 'a stack =
| Empty
| Entry of 'a * 'a stack

let empty = Empty
let is empty s = s = Empty
let push x s = Entry (X, s)
let peek = function
| Empty -> failwith "Empty"
| Entry(x,) -> X
let pop = function
| Empty -> failwith "Empty"
| Entry(,s) -> s

module ListStack = struct
let empty = []

let is empty s = s []

let push x s = x :: s

let peek = function
| O[] -> failwith "Empty"
| x:: > X

let pop = function
| O[] -> failwith "Empty"
| ::xs -> xs

end

Might seem backwards...

* InJava, might write

s = new Stack();

s.push(l);

s.pop();
* The stack s to the left of the dot, the method name is to the right
* In OCaml, it might feel backwards for awhile:

let s = MyStack.empty in

let s’ = MyStack.push 1 s in

MyStack.peek s’
The stack is an argument to every function (common idioms are last
argument or first argument)

Module syntax

module ModuleName = struct
definitions
end

* the ModuleName must be capitalized
* definitions can include 1let, type, exception
* definitions can even include nested module

A module creates a new namespace:

module M = struct let x = 42 end
let vy = M.x

Module semantics

To evaluate a structure
struct
defl
def2

defn
end

evaluate each definition in order

SIGNATURES

A multitude of implementations

* Each has its own representation type
—MyStackuses 'a stack
—ListStackuses 'a list

* Which causes each module to have a different
signature...

module type ListStackSig =

val
val
val
val
val
end

module ListStack

end

empty
is empty
push
peek

pop

a

a
a
a
a

sig
list
list -> bool
-> 'a list -> 'a list
list -> 'a
list -> 'a list
ListStackSig = struct

module type MyStackSig = sig
type 'a stack
= Empty | Entry of 'a * 'a stack

val empty : 'a stack
val is empty 'a stack -> bool
val push : 'a —> 'a stack -> 'a stack
val peek 'a stack -> 'a
val pop 'a stack -> 'a stack
end

module MyStack : MyStackSig = struct

end

Module type syntax

module type SignatureName = sig
type specifications
end

* type specifications aka declarations

* the SignatureName does not have to be capitalized
but usually is

* declarations can include val, type, exception
* declarations can even include nested module type

Module syntax revisited

module ModuleName = struct
definitions

end

module ModuleName = (struct
definitions

end

Module type semantics

If you give a module a type...
module Mod : Sig = struct ... end

Then type checker ensures...

1. Signature matching: everything declared in
Sig must be defined in Mod

2. Encapsulation: nothing other than what's
declared in Sig can be accessed from outside

Mod

1. Signature matching

module type S1 = sig
val x:int
val y:int

end

module M1 : S1 = struct
let x = 42

end

(* type error:
Signature mismatch:

The value 'y' is required but not provided

*)

2. Encapsulation

module type S2 = sig

val x:int

end

module M2 : S2 = struct
let x = 42
let v = 7

end

M2.y

(* type error: Unbound value M2.y *)

For Recitation

ABSTRACT TYPES

Imagine: Fast lists

Assume a hypothetical type 'a fastlist with constructors
FastNil and FastCons that have a more efficient
implementation than 'a list...

module FastStack = struct

type 'a stack = 'a fastlist
let empty = FastNil

end

Suppose you want to upgrade stacks from lists to fast lists...

Exposure is bad

* Client code shouldn't need to know what the
representation type is

 Rule of thumb:

— Onedayaclientof ListStack will writex: : s
instead of push x s

— And the day you upgrade to fast lists, you will break their
code

* Client code shouldn't get to know what the
representation type Is

Abstract types

module type Stack sig

val empty 'a stack

val is empty 'a stack -> bool

val push 'a -> 'a stack -> 'a stack
val peek 'a stack -> 'a

val pop 'a stack -> 'a stack

end

Abstract types

module type Stack = sig

'a stackisabstract: signature declares only that type exists,
but does not define what the type is

* Every module of type Stack must define the abstract type with
some concrete type t

* Inside the module, 'a stack and t are synonyms

* Outside the module, are not synonyms

Abstract types

module
type

module

type

module

type

MyStack
'a stack

ListStack
'a stack

Stack = struct
Empty | Entry of 'a

Stack = struct

'a list

FastListStack : Stack

'a stack

'a fastlist

struct

*

'a stack

Abstract types

module ListStack : Stack = struct
type 'a stack = 'a list
let empty = []

Recall: outside the module, types are not synonyms

So List.hd ListStack.empty will not compile

Abstract types

General principle: information hiding aka
encapsulation

e (lients of Stack don’t need to know it’s
implemented (e.g.) with a list

* Implementers of Stack might one day want to
change the implementation

— If list implementation is exposed, they can’t without
breaking all their clients’ code

— If list implementation is hidden, they can freely change

— e.g, suppose Microsoft wants to update the data
structure representing a window or canvas or file

Abstract types

Common idiom is to call the abstract type t:

module type Stack = sig

type 'a t
val empty : 'a t
val is empty : 'a t -> bool
val push : 'a -> 'at -> 'at
val peek : 'at -> 'a
val pop : 'at -> 'at
end

module ListStack : Stack = struct
type 'a t = 'a list

