110
CS3

Type Inference

Prof. Clarkson
Fall 2018

Today’s music: Cool, Calm, and Collected by The Rolling Stones

Attendance question

What is the type of
fun x -> (fun y -> x) ?

A. 'a->('b->"a)
B. a*('b->"a)
C. (a->'b)->"a
D. (a*'b)->'b

Review

Previously in 3110: Interpreters

Today: Type inference

Robin Milner

Awarded 1991 Turing Award for

“...ML, the first language to include

polymorphic type inference and a

type-safe exceptlon handling
mechanism...

1934-2010

HM guarantees

* |t never infers the wrong types
* It never fails to infer types

* It usually runs in linear time

Simplified HM

Let's omit:
* polymorphic types
e recursive definitions

* making only one pass over program

(more coverage in CS 4110/6110)

Discussion

let g x

5

X

Algorithm

For each top-level definition,

* decorate each AST node with preliminary type
variable

* collect type constraints from each AST node

* use unification to solve constraints and produce
a substitution

* use substitution to infer type of definition

AN INFORMAL EXAMPLE

Example

let g x

let g

5 + x

fun x -> ((+)

fun

7/ \\
X apply
7/ '\
apply X
VAN

(+) 5

>)

Example

let g = fun x -> ((+) 5) X

Step 1: Assign preliminary types to all subexpressions

fun x -> ((+) 5) x

Example

let g = fun x -> ((+) 5) X

Step 1: Assign preliminary types to all subexpressions

fun x -> ((+) 5) x
p 3
((+) 35) x
(+) 5
(+)

Example

let g = fun x -> ((+) 5) X

Step 1: Assign preliminary types to all subexpressions

fun x -> ((+) 5) x
X
((+) 5) x
(+) 5
(+) int -> int -> int

5 int

Example

let g fun x -> ((+) 5) x

Step 1: Assign preliminary types to all subexpressions

fun x -> ((+) 5) x R
X U
((+) 5) x S
(+) 5 T
(+) int -> int -> int
5 int
X V

RS, T,U,Vare preliminary type variables used during inference

Example

fun x -> ((+) 5) x R

fun : R
X U
/. O\
((+) 5) x S x:U apply:$
(+) 5 r app//y; T\X -V
(+) int -> int -> int VAN
5 int (+) 5:int

sint->int->int

X V

Example

let g fun x -> ((+) 5) x

Step 2: Collect constraints

Example

let g = fun x -> ((+) 5) X

Step 2: Collect constraints

fun x -> ((+) 5) x R
X U

((+) 5) x 5

Constraint from function:
R=U=->5

Example

let g = fun x -> ((+) 5) X

Step 2: Collect constraints

X U
X V

Constraint from variable usage:
U=V

Example

let g = fun x -> ((+) 5) X

Step 2: Collect constraints

((+) 35) x 5]
X V
(+) 5 A

Constraint from application:
IT=V=>5

Example

let g = fun x -> ((+) 5) X

Step 2: Collect constraints

(+) 5 T
(+) int -> int -> int
5 int

Constraint from application:
int -> int -> int = int ->7

Example

let g fun x -> ((+) 5) X

Step 2: Collect constraints

v =V
R = U->S
7 = V->5

int -> int -> int = int -> 7T

Example

let g fun x -> ((+) 5) X

Step 3: Solve constraints

v =V
R = U->S
7 = V->5

int -> int -> int = int -> 7T

Example

let g fun x -> ((+) 5) X

Step 3: Solve constraints

R = U->5
[= -> 5

int -> int -> int = int -> 7T

Example

let g fun x -> ((+) 5) X

Step 3: Solve constraints

R = U->$
;7 = U->$

int -> int -> int = int -> 7T

Example

let g fun x -> ((+) 5) X

Step 3: Solve constraints

R = U->$

int -> int -> int = int ->

Example

let g fun x -> ((+) 5) X

Step 3: Solve constraints

R = U->5
int -=> int -> int = int -> U->§

Example

let g fun x -> ((+) 5) X

Step 3: Solve constraints

R = U->5
int -> = 1int >

Example

let g fun x -> ((+) 5) x

Step 3: Solve constraints

R = 1int -> 1int

Example

let g fun x -> ((+) 5) X

Step 3: Solve constraints

R = 1int -> 1int

Done: typeofgisint -> int

CONSTRAINT COLLECTION

Algorithm for constraint collection

* Input: an expression e

Assume for convenience that every anonymous function in e
has a different variable name as its argument

* Output: a set of constraints

* Keyidea: each node in AST generates some
constraints based on typing rule for that node

Def and Use

Define two functions that return preliminary type
variables assigned to AST node:

* D: definition of an argument

* D(x) returns the preliminary type variable assigned
to variable x

* U: useof a subexpression

* U(e) returns the preliminary type variable assigned
to subexpression e

Def and Use

Example:
* Input: fun x -> (fun y -> x)
* Def and Use functions:
—D(x)=R
—-D(y)=3$
—U(fun x -> (fun y -> x)) =7
—U(fun y -> x)=X
—U(x)=Y

Constraint collection

Collect constraint at each AST node:
e At avariable x:

* Ata function application el e2:

* Atananonymous function fun x -> e:

Note how these are essentially the static semantics!

Constraint collection

Continued example:

* Input: fun x -> (fun y -> x)

Def and Use functions: Constraints collected:
D(x)=R * Atavariable x:
D(y) =S U(x) = D(x)

* At a function application el e2:
f ->> - =
Sl £ (fun y A =7 Ulel) = U(e2) -> U(el e2)

U(fui‘ y -2)= At an anonymous function fun x -> e:
Ulz) =Y U(fun x -> e)=D(x)->U(e)

Constraint collection

Example (continued):
* Input: fun x -> (fun y -> x)
* From X, constraintis Y= R

* From fun y -> X, constraintis X=5->Y

* From fun x -> (fun y -> Xx),
constraintis 7= R-=-> X

Def and Use functions: Constraints collected:
D(x)=R * Atavariable x:
D(y) =S U(x) = D(x)

* At a function application el e2:
-> - =
Sl £ (fun y A =7 Ulel) = U(e2) -> U(el e2)

U(fui‘ y -2)= At an anonymous function fun x -> e:
Ulz) =Y U(fun x -> e)=D(x)->U(e)

CONSTRAINT SOLVING

Algorithm for constraint solving

* Input: a set of constraints
* QOutput: a solution to that set of equations

* Key idea: analogous to Gaussian elimination

Unification algorithm

Repeat until constraint set is empty:

* Pick and remove a constraint t1=t2 from set

* Reduce based on t1 and t2:
— Update solution; add new constraint(s) back to set

— Or, fail: inconsistent equations

Invented by John Alan Robinson (d. 2016),
professor at Syracuse University

Reductions

et = ¢t
— no change to solution, no new constraints
*tl -> t2 = t3 -> t4

— no change to solution, add two new constraints:
tl = t3andt2 = t4

* X = t (where X does not appearin t)

— substitute t for X throughout constraint set
thus eliminating X from system of equations

— append substitution X = t to solution

FINISH TYPE INFERENCE

Final step

* Setup:
— Trying to infer type of e
— Preliminary type variable for e was U(e)
— Have a list of substitutions as output of unification

* How to finish:
— Apply substitutions, in order, to U(e)
— If no preliminary type variables remain, done!

— Otherwise, expression is polymorphic; not covered
here

Upcoming events

* N/A

This is cool, calm, and collected.

THIS IS 3110

