
Type Inference

Today’s music: Cool, Calm, and Collected by The Rolling Stones

Prof. Clarkson
Fall 2018

Attendance question

What is the type of
fun x -> (fun y -> x) ?

A. 'a -> ('b -> 'a)
B. 'a * ('b -> 'a)
C. ('a -> 'b) -> 'a
D. ('a * 'b) -> 'b

Review

Previously in 3110: Interpreters

Today: Type inference

HM
Hindley-Milner type inference algorithm

Robin Milner

Awarded 1991 Turing Award for
“…ML, the first language to include
polymorphic type inference and a
type-safe exception handling
mechanism…”

1934-2010

HM guarantees

• It never infers the wrong types

• It never fails to infer types

• It usually runs in linear time

Simplified HM

Let's omit:
• polymorphic types

• recursive definitions
• making only one pass over program

(more coverage in CS 4110/6110)

Discussion

let g x = 5 + x

What is the type of g?
…how did you figure it out?
…how could an algorithm compute it?

Algorithm

For each top-level definition, in order:
• decorate each AST node with preliminary type

variable
• collect type constraints from each AST node
• use unification to solve constraints and produce

a substitution

• use substitution to infer type of definition

AN INFORMAL EXAMPLE

Example

let g x = 5 + x

Desugared:
let g = fun x -> ((+) 5) x

AST:
fun

x

x

apply

(+)

apply

5

Example

let g = fun x -> ((+) 5) x

Step 1: Assign preliminary types to all subexpressions
Subexpression Preliminary type
fun x -> ((+) 5) x

Example

let g = fun x -> ((+) 5) x

Step 1: Assign preliminary types to all subexpressions
Subexpression Preliminary type
fun x -> ((+) 5) x

x

((+) 5) x

(+) 5

(+)

5

x

Example

let g = fun x -> ((+) 5) x

Step 1: Assign preliminary types to all subexpressions
Subexpression Preliminary type
fun x -> ((+) 5) x

x

((+) 5) x

(+) 5

(+) int -> int -> int

5 int

x

Example

let g = fun x -> ((+) 5) x

Step 1: Assign preliminary types to all subexpressions
Subexpression Preliminary type
fun x -> ((+) 5) x R

x U

((+) 5) x S

(+) 5 T

(+) int -> int -> int

5 int

x V

R,S,T,U,V are preliminary type variables used during inference

Example

Subexpression Preliminary type
fun x -> ((+) 5) x R

x U

((+) 5) x S

(+) 5 T

(+) int -> int -> int

5 int

x V

fun : R

x : U

x : V

apply : S

(+)
:int->int->int

apply : T

5:int

Example

let g = fun x -> ((+) 5) x

Step 2: Collect constraints

Example

let g = fun x -> ((+) 5) x

Step 2: Collect constraints
Subexpression Preliminary type
fun x -> ((+) 5) x R

x U

((+) 5) x S

Constraint from function:
R = U -> S

Example

let g = fun x -> ((+) 5) x

Step 2: Collect constraints
Subexpression Preliminary type

x U

x V

Constraint from variable usage:
U = V

Example

let g = fun x -> ((+) 5) x

Step 2: Collect constraints
Subexpression Preliminary type

((+) 5) x S

x V

(+) 5 T

Constraint from application:
T = V -> S

Example

let g = fun x -> ((+) 5) x

Step 2: Collect constraints
Subexpression Preliminary type

(+) 5 T

(+) int -> int -> int
5 int

Constraint from application:
int -> int -> int = int -> T

Example

let g = fun x -> ((+) 5) x

Step 2: Collect constraints

U = V
R = U-> S

T = V-> S

int -> int -> int = int -> T

Example

let g = fun x -> ((+) 5) x

Step 3: Solve constraints

R = U-> S

T = U-> S

int -> int -> int = int -> T

U = V
R = U-> S

T = V-> S

int -> int -> int = int -> T

Example

let g = fun x -> ((+) 5) x

Step 3: Solve constraints

R = U-> S

T = U-> S

int -> int -> int = int -> T

U = V
R = U-> S

T = V-> S

int -> int -> int = int -> T

Example

let g = fun x -> ((+) 5) x

Step 3: Solve constraints

R = U-> S

T = U-> S

int -> int -> int = int -> T

Example

let g = fun x -> ((+) 5) x

Step 3: Solve constraints

R = U-> S

T = U-> S

int -> int -> int = int -> T

Example

let g = fun x -> ((+) 5) x

Step 3: Solve constraints

R = U-> S

int -> int -> int = int -> U -> S

Example

let g = fun x -> ((+) 5) x

Step 3: Solve constraints

R = U-> S

int -> int -> int = int -> U -> S

Example

let g = fun x -> ((+) 5) x

Step 3: Solve constraints

R = int -> int

Example

let g = fun x -> ((+) 5) x

Step 3: Solve constraints

R = int -> int

Done: type of g is int -> int

CONSTRAINT COLLECTION

Algorithm for constraint collection

• Input: an expression e
Assume for convenience that every anonymous function in e
has a different variable name as its argument

• Output: a set of constraints
• Key idea: each node in AST generates some

constraints based on typing rule for that node

Def and Use

Define two functions that return preliminary type
variables assigned to AST node:

• D: definition of an argument
• D(x) returns the preliminary type variable assigned

to variable x

• U: use of a subexpression
• U(e) returns the preliminary type variable assigned

to subexpression e

Def and Use

Example:
• Input: fun x -> (fun y -> x)
• Def and Use functions:
– D(x) = R
– D(y) = S
– U(fun x -> (fun y -> x)) = T
– U(fun y -> x) = X
– U(x) = Y

Constraint collection

Collect constraint at each AST node:
• At a variable x:

U(x) = D(x)

• At a function application e1 e2:
U(e1) = U(e2) -> U(e1 e2)

• At an anonymous function fun x -> e:
U(fun x -> e) = D(x) -> U(e)

Note how these are essentially the static semantics!

Constraint collection

Continued example:
• Input: fun x -> (fun y -> x)

What constraints would be collected?

Constraints collected:
• At a variable x:

U(x) = D(x)
• At a function application e1 e2:

U(e1) = U(e2) -> U(e1 e2)
• At an anonymous function fun x -> e:

U(fun x -> e) = D(x) -> U(e)

Def and Use functions:
D(x) = R
D(y) = S
U(fun x -> (fun y -> x)) = T
U(fun y -> x) = X
U(x) = Y

Constraint collection

Example (continued):
• Input: fun x -> (fun y -> x)
• From x, constraint is Y = R
• From fun y -> x, constraint is X = S -> Y
• From fun x -> (fun y -> x),

constraint is T = R -> X
Constraints collected:
• At a variable x:

U(x) = D(x)
• At a function application e1 e2:

U(e1) = U(e2) -> U(e1 e2)
• At an anonymous function fun x -> e:

U(fun x -> e) = D(x) -> U(e)

Def and Use functions:
D(x) = R
D(y) = S
U(fun x -> (fun y -> x)) = T
U(fun y -> x) = X
U(x) = Y

CONSTRAINT SOLVING

Algorithm for constraint solving

• Input: a set of constraints
• Output: a solution to that set of equations

• Key idea: analogous to Gaussian elimination

Unification algorithm

Repeat until constraint set is empty:
• Pick and remove a constraint t1=t2 from set

• Reduce based on t1 and t2:
– Update solution; add new constraint(s) back to set
– Or, fail: inconsistent equations

Invented by John Alan Robinson (d. 2016),
professor at Syracuse University

Reductions

• t = t
– no change to solution, no new constraints

• t1 -> t2 = t3 -> t4
– no change to solution, add two new constraints:
t1 = t3 and t2 = t4

• X = t (where X does not appear in t)
– substitute t for X throughout constraint set

thus eliminating X from system of equations
– append substitution X = t to solution

FINISH TYPE INFERENCE

Final step

• Setup:
– Trying to infer type of e
– Preliminary type variable for e was U(e)
– Have a list of substitutions as output of unification

• How to finish:
– Apply substitutions, in order, to U(e)
– If no preliminary type variables remain, done!
– Otherwise, expression is polymorphic; not covered

here

Upcoming events

• N/A

This is cool, calm, and collected.

THIS IS 3110

