Balanced Trees

Prof. Clarkson
Fall 2018

Today’s music: Get the Balance Right by Depeche Mode
Finding an element in a linked list is $O(n)$. How efficient is finding an element in a binary search tree?

A. $O(1)$
B. $O(\log n)$
C. $O(n)$
D. $O(n \log n)$
E. $O(n^2)$
Review

Previously in 3110:
• Streams

Today:
• Balanced trees
Running example: Sets

module type Set = sig
 type 'a t
 val empty : 'a t
 val insert : 'a -> 'a t -> 'a t
 val mem : 'a -> 'a t -> bool
 ...
end
Set implementations: performance

<table>
<thead>
<tr>
<th>Workload 1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>insert</td>
<td>mem</td>
</tr>
<tr>
<td>ListSet</td>
<td>35s</td>
<td>106s</td>
</tr>
</tbody>
</table>

MacBook, 1.3 GHz Intel Core m7, 8 GB RAM, median of three runs
Set implementations: performance

<table>
<thead>
<tr>
<th>Workload 1</th>
<th>insert</th>
<th>mem</th>
</tr>
</thead>
<tbody>
<tr>
<td>ListSet</td>
<td>35s</td>
<td>106s</td>
</tr>
<tr>
<td>BstSet</td>
<td>130s</td>
<td>149s</td>
</tr>
</tbody>
</table>

MacBook, 1.3 GHz Intel Core m7, 8 GB RAM, median of three runs
Set implementations: performance

<table>
<thead>
<tr>
<th></th>
<th>Workload 1</th>
<th></th>
<th>Workload 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>insert</td>
<td>mem</td>
<td>insert</td>
<td>mem</td>
</tr>
<tr>
<td>ListSet</td>
<td>35s</td>
<td>106s</td>
<td>35s</td>
<td>106s</td>
</tr>
<tr>
<td>BstSet</td>
<td>130s</td>
<td>149s</td>
<td>0.07s</td>
<td>0.07s</td>
</tr>
</tbody>
</table>

MacBook, 1.3 GHz Intel Core m7, 8 GB RAM, median of three runs
Set implementations: performance

<table>
<thead>
<tr>
<th></th>
<th>Workload 1</th>
<th>Workload 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>insert</td>
<td>mem</td>
</tr>
<tr>
<td>ListSet</td>
<td>35s</td>
<td>106s</td>
</tr>
<tr>
<td>BstSet</td>
<td>130s</td>
<td>149s</td>
</tr>
<tr>
<td>RbSet</td>
<td>0.12s</td>
<td>0.07s</td>
</tr>
</tbody>
</table>

MacBook, 1.3 GHz Intel Core m7, 8 GB RAM, median of three runs
Sir Tony Hoare

b. 1934

Turing Award Winner 1980

For his fundamental contributions to the definition and design of programming languages.

"We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil."
BST SET
Binary search tree (BST)

• Binary tree: every node has two subtrees
• BST invariant:
 – all values in l are less than v
 – all values in r are greater than v
Back to performance

<table>
<thead>
<tr>
<th></th>
<th>Workload 1</th>
<th></th>
<th>Workload 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>insert</td>
<td>mem</td>
<td>insert</td>
<td>mem</td>
</tr>
<tr>
<td>ListSet</td>
<td>35s</td>
<td>106s</td>
<td>35s</td>
<td>106s</td>
</tr>
<tr>
<td>BstSet</td>
<td>130s</td>
<td>149s</td>
<td>0.07s</td>
<td>0.07s</td>
</tr>
</tbody>
</table>
Workloads

• Workload 1:
 – **insert**: 50,000 elements in **ascending** order
 – **mem**: 100,000 elements, half of which not in set

• Workload 2:
 – **insert**: 50,000 elements in **random** order
 – **mem**: 100,000 elements, half of which not in set
Insert in random order

- Resulting tree depends on exact order
- One possibility for inserting 1..4 in random order 3, 2, 4, 1:
Insert in linear order

Only one possibility for inserting 1..4 in linear order 1, 2, 3, 4:

unbalanced: leaning toward the right
Finding an element in a linked list is $O(n)$. How efficient is finding an element in a binary search tree?

A. $O(1)$
B. $O(\log n)$
C. $O(n)$
D. $O(n \log n)$
E. $O(n^2)$
When trees get big

• Inserting next element in linear tree always takes \(n \) operations where \(n \) is number of elements in tree already
• Inserting next element in randomly-built tree might take far fewer...
all paths through *perfect binary tree* have same length: $\log_2 (n+1)$, where n is the number of nodes, recalling there are implicitly leafs below each node at bottom level
Performance of BST

- `insert` and `mem` are both $O(n)$
- But if trees always had short paths instead of long paths, could be better: $O(\log n)$
- How could we ensure short paths?
 - i.e., *balance* trees so they don't lean
Strategies for achieving balance

• In general:
 – Strengthen the RI to require balance
 – And modify insert to guarantee it

• Well known data structures:
 – 2-3 trees: all paths have same length
 – AVL trees: length of shortest and longest path from any node differ at most by one
 – Red-black trees: length of shortest and longest path from any node differ at most by factor of two

• All of these achieve $O(\log(n))$ insert and mem
RED-BLACK TREES
Red-black trees

• [Guibas and Sedgewick 1978], [Okasaki 1998]

• Binary search tree with:
 – Each node colored red or black
 – Leafs colored black

• RI: BST +
 – Local invariant: No red node has a red child
 – Global invariant: Every path from the root to a leaf has the same number of black nodes
Question

Is this a valid rep?

A. Yes
B. No
Path length

• Invariants:
 – No red node has a red child
 – Every path from the root to a leaf has the same number of black nodes

• Together imply: length of longest path is at most twice length of shortest path
 – e.g., B-R-B-R-B-R-B vs. B-B-B-B
RED-BLACK SET
RB rotate (1 of 4)

rotates to

eliminates y-x violation
but maybe y has a red parent: new violation
keep recursing up tree
RB rotate (2 of 4)

rotates to
RB rotate (3 of 4)

Original:

```
    x
   / \  
  y   z
 /     
`b`     `d`
```

Rotates to:

```
    y
   / \  
  x   z
 /     
`a`   `c`

    b
   / \  
  c   d
```

rotates to

```
    y
   / \  
  x   z
 /     
`a`   `c`

    b
   / \  
  c   d
```
RB rotate (4 of 4)

rotates to
RB balance

let balance = function
 | (Blk, Node (Red, Node (Red, a, x, b), y, c), z, d) (* 1 *)
 | (Blk, Node (Red, a, x, Node (Red, b, y, c)), z, d) (* 2 *)
 | (Blk, a, x, Node (Red, Node (Red, b, y, c), z, d)) (* 4 *)
 | (Blk, a, x, Node (Red, b, y, Node (Red, c, z, d))) (* 3 *)
 -> Node (Red, Node (Blk, a, x, b), y, Node (Blk, c, z, d))
 | t -> Node t
Upcoming events

• [next Thur] Prelim

This is blissfully balanced.

WE ARE GROOT
Upcoming events

• [next Thur] Prelim

This is blissfully balanced.

WE ARE 3110
Upcoming events

• [next Thur] Prelim

This is blissfully balanced.

THIS IS 3110