
Variants

Today’s music: Union by The Black Eyed Peas (feat. Sting)

Prof. Clarkson
Fall 2018

Attendance question

Have you used Queue-Me-In?

A. Yes, and overall it's better than not having it

B. Yes and overall it's about the same
C. Yes, and overall it's worse
D. No

GIST
A1: tonight, 8 pm, Gates 310

Review

Previously in 3110:
• Lists, records, tuples
• Pattern matching

Today:
• Variants

VARIANTS

Demo

Variant types

Type definition syntax:

type t =

| C1 of t1

| ...

| Cn of tn

Constructors
aka tags

Optional data
carried by

constructor

Question

Which of the following would be better represented
with records rather than variants?
A. Coins, which can be pennies, nickels, dimes, or

quarters
B. Students, who have names and id numbers
C. A dessert, which has a sauce, a creamy component,

and a crunchy component
D. A and C
E. B and C

Variant: union

type stringOrInt =
| String of string

| Int of int

strings ints∪

Variant: tagged union

type blueOrPinkInt =
| Blue of int

| Pink of int

ints ints⨄

+
One Of: Sum Type

×
Each Of: Product Type

Algebraic
Data Types

RECURSIVE VARIANTS

Demo

PARAMETERIZED VARIANTS

Demo

Type variables

Variable: name standing for unknown value
Type variable: name standing for unknown type

Java example: List<T>

OCaml Syntax: single quote followed by identifier
e.g., 'foo, 'key, 'value

But most often simply just: 'a
Pronounced: "alpha"

Parametric polymorphism

• poly = many, morph = form
• write function that works for many arguments

regardless of their type
• closely related to Java generics
• related to C++ template instantiation

VARIANTS ARE POWERFUL

Lists are just variants

OCaml effectively codes up lists as variants:

type 'a list = [] | :: of 'a * 'a list

• list is a type constructor parameterized on
type variable 'a

• [] and :: are constructors
• Just a bit of syntactic magic in the compiler to

use [] and :: instead of alphabetic identifiers

Exceptions are (mostly) just variants

OCaml effectively codes up exceptions as slightly strange
variants:

type exn
exception MyNewException of string

• Type exn is an extensible variant that may have new
constructors added after its original definition

• Raise exceptions with raise e, where e is a value of type
exn

• Handle exceptions with pattern matching, just like you would
process any variant

OPTIONS

"I call it my billion-dollar mistake. It was the invention of
the null reference in 1965. At that time, I was designing
the first comprehensive type system for references in an
object-oriented language. My goal was to ensure that all
use of references should be absolutely safe, with checking
performed automatically by the compiler. But I couldn’t
resist the temptation to put in a null reference, simply
because it was so easy to implement. This has led to
innumerable errors, vulnerabilities, and system crashes,
which have probably caused a billion dollars of pain and
damage in the last forty years."

– Sir Tony Hoare

Option: A built-in variant

type 'a option = None | Some of 'a

Demo

Upcoming events

• [tonight] A1 Gist
• [Mon] Level Up: git

This is powerful.

THIS IS 3110

