
Functions

Today's music: Expression by Salt-N-Pepa
Rather than repeat Function by E-40 (Clean remix)

Prof. Clarkson
Fall 2018

ACSU

Attendance Question

What does ACSU stand for?

A. Association of Computer Science
Undergraduates

B. Add-Compare-Select Unit

C. Advanced Camel Support Usergroup

D. All Cool Students Unify

First question of day worth the most points. Participation counts, not correctness.

let expressions [Corrected]

let x = e1 in e2

Type-checking:
If e1:t1 and x:t1 and e2:t2
then (let x = e1 in e2) : t2

Review

Previously in 3110:
• Syntax and semantics

• Expressions: if, let

• Definitions: let

Today:

• Functions

ANONYMOUS FUNCTION EXPRESSIONS
& FUNCTION APPLICATION EXPRESSIONS

Demo

Anonymous function expression

Syntax: fun x1 ... xn -> e

fun is a keyword :)

Evaluation:

• A function is a value: no further computation to
do

• In particular, body e is not evaluated until
function is applied

Lambda

• Anonymous functions a.k.a. lambda expressions
• Math notation: λx . e
• The lambda means “what follows is an

anonymous function”

Lambda

• Python
• Java 8

• A popular PL blog

• Lambda style

9

https://docs.python.org/3.5/tutorial/controlflow.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://lambda-the-ultimate.org/
https://www.youtube.com/watch?v=Ci48kqp11F8

Functions are values

Can use them anywhere we use values:
• Functions can take functions as arguments

• Functions can return functions as results

This is an incredibly powerful language feature!

Function application

Syntax: e0 e1 ... en

No parentheses required!

(unless you need to force particular order of
evaluation)

Function application

Evaluation of e0 e1 ... en:

1. Evaluate e0...en to values v0...vn

2. Type checking will ensure that v0 is a
function fun x1 ... xn -> e

3. Substitute vi for xi in e yielding new
expression e’

4. Evaluate e’ to a value v, which is result

Example

Let vs. function

These two expressions are syntactically different
but semantically equivalent:

let x = 2 in x+1

(fun x -> x+1) 2

FUNCTION DEFINITIONS

Demo

Two syntaxes to define functions

These definitions are syntactically different but
semantically equivalent:

let inc = fun x -> x+1

let inc x = x + 1

Fundamentally no difference from let definitions we
saw before

Recursive function definition

Must explicitly state that function is recursive:

let rec f ...

Demo

Reverse application

• Instead of f e can write e |> f
• Use: pipeline a value through several functions
5 |> inc |> square (* ==> 36*)

assuming
let inc x = x + 1

let square x = x * x

FUNCTIONS AND TYPES

Function types

Type t -> u is the type of a function that takes input of type
t and returns output of type u

Type t1 -> t2 -> u is the type of a function that takes
input of type t1 and another input of type t2 and returns
output of type u

etc.

Note dual purpose for -> syntax:
• Function types
• Function values

Function application

Type checking:

If e0 : t1 -> ... -> tn -> u
And e1 : t1,

...,
en : tn

Then e0 e1 ... en : u

Anonymous function expression

Type checking:

If x1:t1, ..., xn:tn
And e:u
Then (fun x1 ... xn -> e) :

t1 -> ... -> tn -> u

PARTIAL APPLICATION

Demo

More syntactic sugar

Multi-argument functions do not exist

fun x y -> e

is syntactic sugar for

fun x -> (fun y -> e)

More syntactic sugar

Multi-argument functions do not exist

fun x y z -> e

is syntactic sugar for

fun x -> (fun y -> (fun z -> e))

More syntactic sugar

Multi-argument functions do not exist

let add x y = x + y

is syntactic sugar for

let add = fun x ->

fun y ->

x + y

Again: Functions are values

Can use them anywhere we use values:
• Functions can take functions as arguments

• Functions can return functions as results

This is an incredibly powerful language feature!

Upcoming events

• [today] A0 released by end of day
• [Mon] Labor Day:
• No discussion sections Monday

– Therefore Tuesday sections (but not lecture) also canceled
• No consulting hours on Monday

This is fun!

THIS IS 3110

