
GIST A9
BY ANDREW SIKOWITZ

OVERVIEW FOR A9

• Implement an interpreter for a specified language, JoCalf

• Much of the interpreter is built: no work required on lexer, parser, REPL, Main

• Your work:

• Design some of the AST that represents JoCalf expressions

• Implement short functions that aid in generating the AST

• Implement evaluation, converting expressions into values (98% of assignment)

• Suggested: Do each of these 3 tasks for one syntactic form at a time, rather than writing all of
the AST types, then all of the Ast_factory functions, and then all evaluation code

• You can do this in scope order

A9 DELIVERABLES

• Zip file, created by `make zip`, which requires work in:

• [ast.ml]: Define types for different structures in the JoCalf AST

• [ast_factory.ml]: Convert parser output to your (newly defined) AST types

• [eval.ml]: Implement evaluation of all different forms of JoCalf expressions; define value type

• [test.ml]: Test suite for everything you implement

• [authors.ml] and [authors.mli]: Assignment metadata.

JoCalf Overview

• Top-level statements can be definitions (like top-level let assignments) or expressions

• Language Features Include:
• Integer, boolean, and string constants; a special value “undefined” that comes up a lot
• Overloaded binary operations (e.g. +, -, *, >, =); short-circuiting && and ||
• Variables; variable assignment via let expressions and functions
• If statements, with an optional else case

• Looping via recursive let expressions and while loops
• Exceptions that carry one value and can be manually thrown and caught; “finally” syntax on catching
• Mutability via references and objects (mutable mapping from fields to values)
• Built-in functions (externs), for type reflection, string length, and object field checking

AST Module

• Make some variants to represent different types of AST nodes

• The abstract syntax in BNF form can act as a rough guide for the types of forms required

• Try to combine similar / identical syntactic forms into one variant case

• e.g. do you need separate ones for if else vs. if with no else?

• That being said, some similar-looking syntactic forms cannot be combined

• Make decisions that make your life easiest

• It’s totally fine to have repetitive variable names

• Just don’t have duplicate constructor names as the OCaml compiler will get confused

Ast_factory Module

• Convert parser output into AST nodes

• Most functions should be very straightforward

• The inputs coming from the parser are usually “pre-processed” – for example:
• Do not have to handle hex, octal, binary conversion
• Object field access syntactic forms e1.e2 and e1[e2] are combined

• Look at <ast_factory.mli> to see what outputs from the parser you get as input

• Most difficult part here is handling integers, which are given as strings from the parser:
• Make sure you can handle min_int, (which is not out of bounds)
• Make sure you can handle -(-5), or that sort of structure

Eval Module

• Implement the JoCalf big step semantics to convert an AST node into a [value]
• You will have to expand the [value] type definition

• Behold the power of variants and recursion: the overall structure of Eval should be very clean

• Big step semantics depend on an environment and a state, for which you must make types
• Environment is mapping between variable names and values (mutable for backpatching)

• Altered by let definitions, let expressions, and functions calls

• Functions are stored as closures: function body + argument names + environment at its definition

• State is mapping between locations (abstraction of memory locations) and values, for mutability
• Altered by references

Eval Module – Tips

• Abstract functionality into helper functions

• When implementing a single syntactic form:
• Read through the relevant section in the JoCalf Manual
• Consult the formal semantics for more precise definitions

• Some syntactic forms have a lot of edge cases. Testing should help here

• When implementing recursive let statements, you use a “backpatching” strategy
• See section 8.12 of the textbook
• Try to implement a recursive function in OCaml without the let keyword first via this strategy
• Then, do the same sort of process but in JoCalf evaluation

Final Tips

• JoCalf exceptions behave a lot like exceptions in other languages, including OCaml
• If an exception is thrown in JoCalf or OCaml, it propagates “upward” until it is caught

• You can look at the formal semantics to verify this behavior

• Maybe you can leverage this similarity to greatly reduce the complexity of exception handling

• There is a simple way to implement locations

• Just make sure distinct locations are represented differently (have different values)

• Some syntactic forms are grindy to implement; others are more conceptually difficult

• Plan accordingly

