On the domains of definition of functions

LUITZEN EGBERTUS JAN BROUWER
(1927)

In a series of papers published from
1918 onward, Brouwer set forth an intui-
tionistic “set theory’ and on this basis
an intuitionistic reconstruction of point-
set topology and analysis. The text below
is part of a paper published in 1927 (re-
ceived for publication on 28 April 1926)
and contains the proof that every func-
tion that is (in the intuitionistic sense)
everywhere defined on the closed interval
[0, 1] of the continuum is uniformly con-
tinuous (Theorem 3). In the course of the
argument Brouwer proves the funda-
mental theorem on “sets’ that he later
(1953) called the bar theorem, as well as
its corollary, the fan theorem (Theorem
2).2
The text brings together and reworks
previous expositions of these results.
The uniform-continuity theorem had
been asserted earlier (1923, p. 4), with
only an indication of the fan theorem.
The bar theorem and the fan theorem
were proved, again for the sake of uni-
form continuity, in a subsequent paper
(1924 (or its German translation, 1924a),
amended and added to in 1924b (or
1924c)).

The intuitionistic theory of the con-
tinuum is based on Brouwer’s own notion
of set (see below, p. 453). Brouwer was
dissatisfied, it seems, with the treatment
of the continuum by earlier constructivist
mathematicians. They either abandoned
their constructivism at this point and
adopted an axiom of completeness or, as
is done in theories of the continuum

based on ramified type theory, rejected
any means of quantifying over more than
a denumerable subset of real numbers at
a time (see Brouwer 1952, p. 140, and
1953, p. 1). So what was required was an
intuitionistic interpretation of quantifica-
tion over all sequences of natural num-
bers or over all sequences satisfying some
condition.

To explain the classical conception of
such quantification, one sometimes pic-
tures an arbitrary sequence as that
which results from one choice for each
term, these infinitely many choices being
conceived sub specie aeternitatis, so that
questions about the sequence as a whole
(such as whether for some n the nth term
is zero) are always objectively deter-
mined. Brouwer’s idea was to substitute
for this the picture of an infinitely pro-
ceeding sequence of choices that is such
that at the nth choice one could restrict
one’s freedom as to future choices by
laying down some (not necessarily deter-
ministic) law. This is presented as a pro-
cess in time: only so much about the
sequence is determined at a given stage
of its generation as follows from what the
initial segment up to that stage is and
from the laws that have been laid down.
If there are no such laws, nothing will be
true of the sequence but what is deter-
mined to be true on the basis of some

® The earliest printed use of *fan theorem”
is, it seems, in Brouwer 1952, p. 143 ; Brouwer
used ‘‘waaierstelling’’ earlier in lectures.
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initial segment of it. This means that
functions whose arguments are free-
choice sequences will be continuous.

The conception that gives mathe-
matical form to this picture is Brouwer’s
notion of set, or spread.” The definition
can be expressed as follows (see Heyting
1956, pp. 34-35). We have a law A, that
characterizes certain finite sequences of
natural numbers as admissible for the
spread M and is such that

(1) Every finite sequence of natural
numbers is either admissible or not (this
means that the law enables us to decide
of a given sequence whether it is admis-
sible or not) ;°

(2) If<ay, . ..
<a’1» . "a’n>;

(3) An admissible sequence of length 1
can be specified ;

4) If <a,, ..., a,> is admissible, either
an m can be found so that <{a,,...,a,,
m) is admissible or there is no such m
(termination of the process).

Then we have a second law X, that to
each sequence admissible for M assigns a
definite mathematical object.®

Thus, given a sequence a,, a,, ... of
natural numbers such that, for every =,
{@y,...,a,> is admissible, we obtain a
corresponding sequence &, = X({a,)), &,
= 2({ay, ay)),.... A sequence such as
£, &, ... is what Brouwer calls an
element of the spread M.°

As an example, we consider the spread
of points of the continuum, discussed in
the paper below. There are many ways of
defining a spread that corresponds to the
intuitive notion of the continuum. Brou-
wer defines a point of the continuum as
an infinitely proceeding sequence of in-
tervals that are of the form I,, =
[m/2",(m + 2)/2"] and are such that each
one lies in the interior of its predecessor.
The spread of such points could be de-
fined formally as follows. Let p,, po, . ..
be an enumeration of the pairs of natural
numbers, and let p,(z) and py(x) be such
that, if p; = (r, s>, r = py(¢) and s =
p2(¢). Then any sequence {n) of length 1

, &y, .1y is admissible, so is
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is admissible and is assigned the interval
1, ). 00my If <@y, ..., a,> is admissible
and is assigned the interval I, , then

{@y, ..., a,, k) is admissible if and only if
ro_pk) g +2 142
28 90,(k) Q05 (k) < 9s

and then the interval I, 4 .40 I8
assigned to <ay, ..., a,, k).

Brouwer says that a spread is finitary
if for every » there can be determined a
k, such that the nth term of an admis-
sible sequence, if it exists, is always less
than k, (below, p. 454). This is equiva-
lent to the following condition: there
exists a k, such that (n> is admissible
only if n < k,, and for any admissible a
there exists a kq such that ax(m) is
admissible only if m < ko' That is, at

b See below, p. 453.

¢ 1In 1953, p. 8, Brouwer admits a species of
admissible sequences that is ‘‘not necessarily
predeterminate’’. Although what this means is
not altogether clear, he apparently does not
intend to relax the requirement that we have
stated. It seems, however, that Brouwer in-
tends to allow the definition of a not necessarily
predeterminate species to contain a free-choice
parameter. Then, as Kreisel points out (1964,
pp. 0.35-0.36), an example due to Kleene im-
plies that the statement of the bar theorem

given in Brouwer 1953, p. 14, requires
modification.
4 Brouwer’s definition specifies a ‘‘sign

series’’ (below, p. 453) ; this would suggest that
species and free-choice sequences are not
allowed. It seems that this restriction is not
held to in subsequent intuitionistic writings. In
1952, p. 142, Brouwer speaks of ‘‘infinitely
proceeding sequences pi, Pg, ..., Whose terms
are chosen more or less freely from mathematical
entities previously acquired”, which would
seem to allow anything compatible with a
step-by-step generation of mathematical enti-
ties. But see Brouwer 1942.

® The sequence is finite if an » is reached for
which <ay,...,a,> is terminal (that is, the
second side of the alternative under (4) holds).
Clearly, we cannot say of a given sequence
that it either comes to an end or does not.

f We shall use lower-case German letters as
variables ranging over finite sequences of
natural numbers. axb is the concatenation of
a and b; if a = <ay,...,a,> and b = <by, ...,
by, then axb = {aq, ..., ap, by, ..., bp).
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each stage there are only finitely many
choices.

The unit continuum can be represented
by a finitary spread if one sets a limit on
how much smaller an interval can be than
its predecessor (and on how small the
initial interval may be), for then there
are only finitely many choices.

Before we go on, the reader’s attention
is called to Brouwer’s conception of a
species. The definition that he gives in
1925 will be found below, p. 454. Later,
species are defined as “properties sup-
posable for mathematical entities pre-
viously acquired and satisfying the con-
dition that, if they hold for a certain
mathematical entity, they also hold for
all mathematical entities that have been
defined to be equal to it” (1953, p. 2).
Since two species are equal if they have
the same members, the notion of species
has about the same role as that of class
in nonintuitionistic mathematics.

Before we can explain the results of
the paper below, we need to ask the
question what meaning we can give to
the notion of a function that maps one
spread into another or into the natural
numbers. It is by the analysis of this
notion that Brouwer obtains the infor-
mation necessary to prove the bar
theorem and the uniform-continuity
theorem.

The essence of the analysis is that,
when a function is defined on a spread
and has definite objects such as natural
numbers as its values, its value for a
given sequence that is an element of the
spread must be determined by a finite
number of terms of the sequence. If the
value itself is to be a free-choice sequence,
a certain initial segment of the argument
must suffice to determine the first term
of the value, a certain further segment to
determine the second term, and so on.®

We must state this point with precision
in order to avoid ambiguities. Consider a
functional F that is defined on a spread
M and whose values are natural num-
bers, as in the bar theorem. Then for
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every element « of M there exists a
number » such that, if 8 agrees with « on
the first » terms, that is, if the sequence

& The first of these two statements is the con-
tinuity requirement that Brouwer makes in his
proofs of the bar and fan theorems and of uni-
form continuity. But what in Theorem 1 below
is stated to follow directly from the intuitionis-
tic conception of a full function is a condition,
weaker than the second statement, of negative
continuity. It is puzzling why Brouwer states
negative continuity with some fanfare and then
goes on, at the beginning of § 2, to state quietly
a stronger continuity requirement. The explana-
tion seems to be as follows. Theorem 1 states
the negative continuity of a full function in
terms of the definition of § 1, that is, of the
definition of negative continuity for a function
of point cores. If f is a function that maps point
cores onto point cores, it induces a function f,
that maps points onto points. From the
assumption of § 2 it follows immediately that,
if f is a full function, f, is positively continuous.
But it is not quite immediate that f is posi-
tively continuous.

Let ¢, be a point core; we must prove that
[ is continuous at ¢,. Let p, be a point belong-
ing to £;; then the point fy(p,) belongs to
f(&,). Note that a point p is a sequence of
intervals p(n); we can denote by ‘“p(m)”’ the
sequence of the first m intervals of p. From the
continuity requirements of § 2 it follows that
for any n we can find an m such that, if p(m)
= Po(m), then [ fo(p)l(n) = [ fo(po)I(n).

Given ¢ > 0, chose n, so that the diameter of

[fo(po))(ne) < e. For each m let a, and b, be
the end points of py(m). Let m, be the m ob-
tained as above with n = n,. Now let

bmg+1))-

8 = %(min(amo+1 - amo’ bmo -
8 is positive since po(m, + 1) lies entirely with-
in py(mg). Suppose that | ¢ — §;| < § and that
p is a point of ¢. Let & be such that the dia-
meter of p(k) < 8. Then p(k) lies entirely within
p(mg). Therefore p coincides with the point
9 = Po(0), - - ., Po(mo), p(k), p(k + 1),..., and
Jo(p) coincides with fo(g). Since [fo(q)](no) =

[7o(Po)l(n), and fo(g) is a point of £(£), we have
(&) = 7(£0)] < e q.e.d.

Since the number § obtained for a given ¢,
and a given ¢ depends on the particular point
Po that represents ¢,, the argument does not
show that there is a function giving 8§ in terms
of £, and e. The existence of such a function is
equivalent to wuniform continuity in some
neighborhood containing ¢, and presumably
cannot be proved without the fan theorem.
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of natural numbers of length n is the
same for both, F(«) = F(B).

This implies that F can be represented
by f, a function from finite sequences of
natural numbers to natural numbers, in
the following sense: if, in attempting to
compute F(a) on the basis of the choices
for « prescribed by the sequence a, we
reach a point at which we lack the infor-
mation about « needed to continue the
computation, we set f(a) = 0. If we can
complete the computation without meet-
ing such an obstacle, we set f(a) = F(«)
+ 1. This equation will hold for any «
generated by a sequence of choices be-
ginning with the choices of a.

The species p, of § 2 in the text below
can be identified with the species of
admissible sequences a for which f(a) #0,
but f(b) = 0 for any proper initial seg-
ment b of a. Brouwer says that a sequence
is secured if it belongs to ), has an initial
segment belonging to p;, or is inadmis-
sible. The argument for the bar theorem,
as well as for later results along the same
lines, turns on an analysis of the species
of unsecured sequences. If <a,, ..., a,> is
secured and either » =1 or (ay,...,
@, _,> is unsecured, <{ay,...,a,> is said
to be immediately secured.

The important mathematical content
of the paper is contained in the bar
theorem. The fan theorem and the uni-
form-continuity theorem are corollaries.
Below, the bar theorem is stated in the
fourth paragraph of § 2. The claim is that,
for a functional F from a spread M to the
natural numbers, the species of unsecured
sequences is capable of a certain kind of
well-ordered construction. In order to
explain this, we must make some re-
marks about Brouwer's theory of well-
ordering.

The basic definitions are given below,
pPp. 456-457. I use the terminology pre-
sented in these definitions. It follows
from the definition of a well-ordered
species that with each well-ordered
species S there is associated a species S’
of finite sequences of natural numbers,
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the members of S’ being the subscript
sequences for the constructional under-
species of . We can specify S, up to iso-
morphism, by giving §" and stating, for
each sequence associated with a primi-
tive species, whether the element of that
species is a full or a null element.

Consider now the following ordering of
finite sequences: {a,, ..., a,> <<by,...,
b, if either

(1) m < » and a; = b, for
i=1,....m
or
(2) for some ¢ < min(m, n), a;, = b, for
all j < ¢, while a; ., < b;,1;

that is, the sequences are so ordered by
< that an extension of a sequence pre-
cedes it and that otherwise two sequences
are ordered lexicographically. Clearly,
this is a primitive recursive linear order-
ing.® If S; and Sy are the constructional
underspecies of § with the subscript
sequences a and b respectively, then
a < b if and only if S, precedes Sp in the
construction of S, that is, S; is a construc-
tional underspecies of Sy, or every ele-
ment of S, precedes every element of Sy
in the ordering of S. Since the latter side
of the alternative must hold if S, and Sp
are primitive species, the ordering < re-
stricted to the subscript sequences of
primitive species is isomorphic (as a
linear ordering) to the ordering of S. The
ordering < restricted to §’ satisfies the
condition that every descending chain is
finite, by virtue of the well-founded
nature of the construction of S. Thus it
is a well-ordering according to the
classical conception.

The bar theorem can now be stated as
follows. Let F be a functional that to
each element « of a spread M assigns a
natural number. With F is associated
the species 7' of its unsecured and im-
mediately secured sequences. Then T is
the species S’ of subscript sequences of

® We identify the sequence <a;, . .

the number IT pgi+1+1,
i<n

., Gy With
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some well-ordered species S. The ele-
ments of S can be taken to be the
immediately secured sequences of F.
The sequence a is a full element if it is
admissible (and a fortiori if f(a) # 0) and
a null element otherwise.!

All this means that 7' can be induc-
tively defined as follows:

(1) If a is immediately secured, then
aeT;

(2) If ax(n>eT for every m, then

aeT.
Hence we have the following induction
principle: If a property holds of every
immediately secured sequence and holds
of a if it holds of ax{(n) for every n, then
it holds of every sequence in 7'. In recent
writings (Spector 1961, p. 9, Kreisel 1963)
an essentially equivalent principle is
formalized under the title “bar induc-
tion”. Different versions of this prin-
ciple are stated and compared in Kleene
and Vesley 1965, § 6, where, however, the
name ‘‘bar induction’’ is not used, and
in Howard and Kreisel 1966.

An equivalent statement is that the
representing function f of F belongs to a
certain inductively generated species K
of functions from finite sequences of
natural numbers to natural numbers,
defined as follows:

(1) Any constant function belongs to

(2) If H enumerates a sequence of
functions in K, then

Xag, . . ., ap{H(ao)} Koy, . .., a,)) e K.

Theorem 2, later called the fan theo-
rem, states that, if the spread M on
which F is defined is finitary, there can
be found an n such that, for any «, the
value of F depends only on the first »
choices for «. This follows because one
can show by an induction parallel to the
generation of 7' that in this case there
are only finitely many unsecured se-
quences. Clearly, the fan theorem in
effect asserts the uniform continuity of
F. Since, as we indicated above, the
points of the unit continuum can be
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generated as a finitary spread, functions
defined everywhere on the unit contin-
uum, with points of the continuum as
values, are uniformly continuous (Theo-
rem 3).

The result of this analysis is that many
definitions of functions of a real variable
that, from the classical point of view,
assign a value to the function for each
value of the argument do not do so
intuitionistically. The question arises
whether one can single out certain sub-
species of the continuum such that a
function defined on such a subspecies
will be analogous to a classically every-
where defined function. Such a function
could be said to be pseudo-full. In the
sections of the paper that are not re-
printed here, Brouwer discusses a number
of possible criteria for the domain D of
a pseudo-full function of the unit con-
tinuum. Clearly, D should be a species
that possesses a property classically
equivalent to coincidence with the unit
continuum. The one that Brouwer selects
is congruence—that it is absurd that there
should be a point of the unit continuum
not coinciding with any point of the
species (1923d, p. 255). The further re-
quirement concerns measure: for every
measure on the unit continuum D must
be measurable and possess the measure 1.

A point that requires some discussion
is the nature of the proof of the bar
theorem. Even if we accept the conti-
nuity condition as expressing part of
what we mean by a constructive func-
tional on a spread, this is not sufficient
for the proof. Brouwer goes on to exploit
more fully than in any other intuitionistic
argument the following peculiarity of
intuitionistic mathematics: the supposi-
tion that a mathematical proposition is
true is just the supposition that one has
a (constructive) proof of it. In particular
this will be the case, given a sequence a,
for the statement that a is securable, that

! This statement differs only in minor details
from that of the text (fourth paragraph of § 2,
p- 461 below).
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is, that every sequence a, ax<b,>,...,
ax<by,...,b,>,... contains a term that
is secured. Brouwer goes on to make a con-
troversial assumption about the possible
form of a proof of such a statement.
He claims that a proof of securability is
based on the ‘““givenness’ of the secured
sequences and on the relations between
sequences that are formed by the com-
position of the relation of immediate
succession, that is, the relation between
a and ax(n). Then the proof can be
brought into a canonical form that uses
only inferences resting upon the basic
relations :

(1) If a is (immediately) secured, it is
securable ;

(2) If a is securable, so is ax{(n)
(¢-inference) ;

(3) If ax(n) is securable for every =,
a is securable (f-inference).

In the remainder of the argument it is
shown that, for each unsecured sequence
a for which the canonical proof estab-
lishes that it is securable, there exists a
well-ordered construction of the species
T of descendants of a in 7'. It seems to
follow, and indeed this is explicitly
stated in Brouwer 1953, that the {-infer-
ences are superfluous. We obtain a well-
ordered construction in 7' itself by one
more second generating operation (be-
low, p. 456), taking as the nth term 7T',,
if (n) is admissible and a species con-
sisting of a single null element (below,
p. 456) otherwise.

What can be said in justification of
the claim that the proofs of securability
have a canonical form ? It does not seem
to be at all evident. Indeed, it seems not
to follow from Brouwer’s remark that no
other basis is available for the proofs
than the relations of a sequence to those
immediately issuing from it. For, perhaps,
the proof might make some use of these
relations that is not reducible to infer-
ences directly involving the notion of
securability.

Unfortunately, Brouwer’s thesis that
mathematics is independent of language
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and logic makes it difficult and perhaps
impossible to consider possible counter-
examples to his claim. However, it seems
that his point of view implies the exist-
ence of cut-free canonical proofs, in which
inductions are replaced by infinitary in-
ferences (footnote 8 below, p. 460). This
might be the answer to the objection that
the assertion (represented as ‘““q’’) of the
securability of a sequence might be in-
ferred from statements “p”’ and “p>¢q”
while there might be no reason to expect
the proofs of these premisses to contain
the inferences that he claims. That
modus ponens should be eliminable is
suggested by Heyting’s subsequent ex-
planation of the conditional, together
with the thesis that mathematics is
independent of logic. According to Hey-
ting “p D ¢” is the claim that there exists
a method of reaching a proof of “¢”’ from
one of “p”’. Now, if the logical connec-
tives are explained in terms of a notion
of proof, one might expect that the
“proofs” referred to in the explanation
of a statement not containing the con-
ditional should not themselves contain
conditionals.

The general intuitionistic conceptions
leave the meaning of quantification over
free-choice sequences somewhat vague.
It is made clearer by Brouwer’s concep-
tion of a spread and by the continuity
requirement, but there is room for further
clarification. In the case of universal
quantification over natural numbers,
ordinary induction provides a very clear
proof procedure, which arises directly
from the inductive generation of the
sequence of natural numbers itself.
Nothing comparable is available for free-
choice sequences. Indeed, it is not even
certain whether they are to be regarded
as individual mathematical objects at all
or whether quantification over them is to
be regarded as a fagon de parler.

In the latter case we may be free to
stipulate some criteria for the truth of
statements containing such quantifica-
tion. Even if free-choice sequences are
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individual mathematical objects, the
notion seems vague enough, so that a
stipulation as to truth or proof conditions
of statements of certain forms may serve
to clarify it. Indeed, Brouwer himself
suggests in footnote 7, p. 460 below, that
a stipulation underlies the bar theorem
he says that, “when carefully considered
from the intuitionistic point of view”,
securability is just the property defined
by an inductive definition like that given
above for the species 7.

In summary, Brouwer’s justification
for the bar theorem is certainly not evi-
dent or even satisfactory. His work
makes clear that to obtain powerful
results in intuitionistic analysis it is
necessary to make some strong assump-
tion that exploits the specifically intui-
tionistic force of quantification over free-
choice sequences. If the assumptions that
he makes are less evident than, say, the
axiom of choice is in terms of the classical
conception of set, this may be due to the
newness of the whole subject.

Another point worth mentioning is that
the well-ordering of unsecured sequences
of continuous functionals was used in a
classical context in descriptive set theory,
prior to Brouwer’s publication. Let S be
a topological space, and suppose that we
have a function that to each sequence a
assigns a subset M, of S. Then M is de-
fined by the operation A applied to the
sets M, if

that is, if
xeM = (Ha)(n)(x e M go.... am>)

(e ranging over one-place number-theor-
etic functions). Then we can say that a
sequence a is secured with respect to x if
x ¢ My ; if « satisfies the condition’

a(m) = a, form < @,
then in case a is secured we have

(@n)(x ¢ M (a0,....a005)-
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Hence, if every unsecured sequence is
securable, we have

(O‘)(ﬂn)(x ¢ M(a(O) ..... a(n)>)>

that is, z ¢ M. This will hold if and only
if the ordering < restricted to sequences
unsecured with respect to x is a well-
ordering. So we have

M = #(< well-orders a(x ¢ My)).

Taking the real line as the set S, Suslin
(1917) defines a class of sets called A4-sets,
which are those subsets of S that can be
obtained by the operation A from sys-
tems of closed intervals. These sets are
the same as the analytic sets, which can
be defined in other ways, for example, as
the images of S by functions continuous
for all but countably many arguments or
as the projections of Borel subsets of the
plane. Suslin states that a set M is a
Borel set if and only if both M and M
are A-sets. A proof of this that uses the
above definition of M in terms of un-
secured sequences was given by Luzin
and Sierpinski (1918, pp. 36—42). Exten-
sive use of this method was made by
Luzin in the twenties (1927 ; 1930, chap.
III), for example, to prove the first and
second separation principles for analytic
sets. Luzin (1927, pp. 2-3; 1930, pp. 197~
200) finds the germ of the idea in a con-
struction by Lebesgue (1905).% From
Brouwer’s eminence as a topologist it
would be plausible to conclude that he
knew Luzin and Sierpinski’s proof, but
direct evidence is lacking.

The ideas of Brouwer and of the de-
scriptive set theorists come together in
Kleene’s work on the hyperarithmetic
and analytic hierarchies (1959). If we let
the space S mentioned above be the set

Va, = the (m + 1)th term of a, & = the
least m for which q,, does not exist.

k A special case of the operation 4 was intro-
duced by Aleksandrov (1916). Although he
does not give a definition of A-sets that is
equivalent to Suslin’s, he proves in effect that
every Borel set is an A-set.
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of natural numbers, the X} sets are just
those that we obtain by applying the
operation A, with the condition that
“xe My” be primitive recursive. In this
case the ordering of unsecured sequences
is also primitive recursive. Kleene seems
to have derived the idea of the well-
ordering from Brouwer by observing that
in this case (a)@n)(® ¢ M (ao.....am>)
says that a certain recursive (and there-
fore continuous) functional is everywhere
defined. He can thus show that any IT}
set is recursive in the set O of notations
for recursive ordinals. Spector (1955)
shows that any II} set is recursive also in
the set W of Godel numbers of recursive
well-orderings. (Since W and O are II},
they are therefore recursive in each
other.)

Further use by Kleene of the well-
ordering (for example, to show that the
hyperarithmetic sets are those that are
21 and IT}) is very close to that of des-
criptive set theory. The analogies are
made very clear by Addison (1958), who,
however, neglects to mention Kleene’s
debt to Brouwer.

As this example illustrates, the great-
est influence of Brouwer’s ideas has been
on the development of theories of effect-
iveness and constructivity at higher
types, in which the analysis of unsecured
sequences is now a standard tool. Appli-
cation of conceptions related to the bar
theorem in proof theory has become quite
extensive in recent work by Spector,
Kreisel, and others. Although this work
was motivated mainly by the consistency
problem for classical analysis, it has also
served to clarify the intuitionistic ideas
themselves. The hope entertained by
many that the idea of the bar theorem
would yield a proof of the consistency of
classical analysis led to a precise result by
Spector (1961), who proved the consis-
tency of classical analysis relative to that
of a quantifier-free system containing
functionals of arbitrary finite types and
a schema for the definition of functionals
by ““bar recursion”’. But the form of ““bar
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induction” that would serve to justify
Spector’s form of bar recursion is a
generalization in which the ““unsecured
sequences’’ can be objects of any finite
type. It is thus a substantial extension,
for which no constructive foundation is
known, of what has previously counted
as intuitionistic mathematics.

Charles Parsons'

To help the reader in his study of the
paper, we now print, in their logical order,
the definitions, culled from Brouwer’s
writings, of a number of intuitionistic
notions used in the paper.™

“A set [Menge] is a law on the basis
of which, if repeated choices of arbitrary
natural numbers [Nummer]] are made,
each of these choices either generates a
definite sign series [Zeichenreihe]), with or
without termination of the process, or
brings about the inhibition of the process
together with the definitive annihilation
of its result ; for every n > 1, after every
unterminated and uninhibited sequence
of n — 1 choices, at least one natural num-
ber can be specified that, if selected as the
nth number, does not bring about the
inhibition of the process. Every sequence
of sign series generated in this manner by
an unlimited choice sequence [unbegrenz.-
ten Wahlfolge]] (and hence generally not
representable in a finished form) is called
an element of the set. We shall also speak
of the common mode of formation of the
elements of a set M as, for short, the set
M. (Brouwer 1925, pp. 244-245 (a foot-
note is omitted) ; see also 1918, p. 3, and
1919b, pp. 204-205, or in the reprint pp.
950-951.)

Subsequently, the terms that Brouwer
uses for this notion are ‘“‘spreiding”
(1947, in Dutch) and “spread” (1953).

!'T am indebted to Dirk van Dalen, Burton
Dreben, J. J. de Iongh, Yiannis Moschovakis,
and especially to Georg Kreisel and the editor,
for their assistance and suggestions.

m I am grateful to Professor Richard E.
Vesley for having helped me to understand a
number of passages in Brouwer’s writings.
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“If for every n in { [[the sequence of
natural numbers, 1,2, 3,...] a natural
number k, is determined such that the
inhibition of the process takes place
whenever a natural number lying in {
above k, is selected at the nmth choice,
then the set is said to be finttary ([ finit].”
(Brouwer 1925, p. 245.)

“Two set elements are said to be equal
[gleich]), or identical [identesch]], if we are
sure that for every n the wmth choice
generates the same sign series for the two
elements.

“Two sets are said to be equal, or
tdentical, if for every element of one set
an equal element of the other can be
specified.

“The set M is called a subset [[Teil-
menge]] of the set N if for every element
of M an equal element of N exists.

“Sets and elements of sets are called
mathematical entities.

“By a species [Spezies]) of first order we
understand a property (defined in a
conceptually complete form) that only a
mathematical entity can possess, and, if
it does, the entity is called an element of
the species of first order. Sets constitute
special cases of species of first order.

“Two species of first order are said to
be equal, or tdentical, if for every element
of one species an equal element of the
other can be specified.

“By a spectes of second order we under-
stand a property that only a mathemati-
cal entity or a species of first order can
possess, and, if it does, the entity or the
species is called an element of the species
of second order.

“Two species of second order are said
to be equal, or identical, if for every
element of one species an equal element
of the other can be specified.

“In an analogous manner we define
species of nth order, as well as their
equality, or identity, n representing an
arbitrary element of A4 [the set of
natural numbers].

“The species M is called a subspecies
[Teilspezies] of the species N if for every
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element of M an equal element of N
exists. If, moreover, it is possible to
specify an element of N that cannot be
equal to any element of M, then M is
called a proper subspecies of N.

“Two set elements are said to be
distinct [verschieden] if the impossibility
of their equality has been established,
that is, if we are sure that, in the course
of their generation, their equality can
never be proved.

“Two species are said to be distinct if
the impossibility of their equality has
been established.” (Brouwer 1925, pp.
245-246.)

““A species of which any two elements
can be recognized either to be equal or to
be distinct is said to be discrete.”” (Brou-
wer 1925, p. 246.)

“The species that contains those
elements that belong either to the species
M or to the species N is called the union
of M and N, and it is denoted by
S(M, N).” (Brouwer 1925, p. 247.)

“Two species M and N are said to be
disjoint [[elementefremd]] if they are dis-
tinct and it is impossible that there exist
an element of M and an element of N
that are identical with each other.”
(Brouwer 1925, p. 247.)

“If M’ and M" are disjoint subspecies
of N and if &(M’, M") and N are identi-
cal, then we say that N splits [[zerlegt ist]
into M’ and M"; we call M’ and M"
conjugate splitting species of N, and M’,
as well as M”, is called a removable
[abtrennbare]] subspecies of N.”” (Brouwer
1925, p. 247 ; see also Brouwer 1918, p. 4,
Heyting 1956, p. 39, where, instead of
“removable”’, ‘“detachable’ is used, and
Brouwer 1953, p. 6.) If M’ and M" are
removable subspecies of N, we can decide
whether an arbitrary element of N
belongs to M’ or to M".

“If between two species M and N
there can be established a one-to-one
relation, that is, a law that with every
element of M associates an element of N
in such a way that equal elements of N
correspond to equal, and only to equal,
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elements of M and that every element of
N is associated with an element of M, we
write M ~ N and say that M and N
have the same cardinality [ Mdchtigkeit]),
or cardinal number, or are equipollent
[gleichmdchtig]).” (Browwer 1925, p. 247.)

“The simplest example of an infinite
set is the set A4 itself, and we denote its
cardinal number by a. Species that pos-
sess that cardinal number are said to be
denumerably infinite [[abzdhlbar unend-
lich]].” (Brouwer 1925, p. 249; see also
Browwer 1918, pp. 6-7, and Heyting 1956,
p- 39.)

““A species M [[of cardinal number m]
satisfying the formula m =< a is said to
be denumerable [abzdhlbar]. In particu-
lar, it is said to be numerable [zdhlbar]]
if it can be mapped one-to-one onto a
removable subspecies of A.” (Brouwer
1925, p. 255; see also Brouwer 1918,
p- 7, and Heyting 1929 and 1956,
p. 40.)

“A species P is said to be wvirtually
ordered [[virtuell geordmet] if an asym-
metric relation, which will be called the
ordering relation, is defined for the
elements of a subspecies of the species of
pairs (a, b) of elements of P; we express
this relation by ‘a < b’, ‘a before b’, ‘a
to the left of b’, ‘a lower than b’, ‘b > a’,
‘b after a’, ‘b to the right of a’, or ‘b higher
than a’, and, if we express the identity of
two elements p and q of P by the for-
mula ‘p = ¢’, stipulate that it possess
the following ‘order properties’:

(1) The relations r =s, r < s, and
r > s are mutually exclusive;

(2) From r = u, s =v, and r < s it
follows that v < v;

(3) From the simultaneous absurdity
[Ungereimtheit]] of the relations r > s
and 7 = s it follows that r < s;

(4) From the simultaneous absurdity
of the relations » > s and r < s it follows
that r = s;

(5) From r < s and s < ¢ it follows
that » < ¢.” (Brouwer 1925a, p. 453 ; see
also Brouwer 1918, p. 13, and Heyting
1955, p. 33, and 1956, p. 107.)
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“The virtually ordered species P is
said to be everywhere dense in the extended
sense, or, for short, everywhere dense, if
between any two distinct elements of P
there lie elements of P, and it is said to
be everywhere dense in the strict sense if
moreover an element of P can be speci-
fied and elements of P lie to the right as
well as to the left of an arbitrary element
of P.” (Brouwer 1925a, p. 454 ; see also
Brouwer 1918, p. 16.)

“If between two virtually ordered
species P and @ there has been estab-
lished a one-to-one relation that leaves
the ordering relations invariant, we say
that P and @ possess the same ordinal
number, or are similar.” (Brouwer 1925a,
p- 455; see also Brouwer 1918, p. 14.)

“A virtually ordered species is said
to be ordered if an ordering relation
obtains for every pair (a,b) of distinct
elements” (Brouwer 1925a, p. 455 (a
footnote is omitted); see also Heyting
1956, p. 106.)

““A discrete ordered species is also said
to be completely ordered.” (Brouwer 1925a,
p. 455.)

The ordinal number of the set 4 in its
natural ordering is denoted by w.

“Ordered species of ordinal number w
are also called fundamental sequences
[ Fundamentalrethen].” (Brouwer 1925a,
p. 455; see also Brouwer 1918, p. 14.)

“Let R be a virtually ordered species
of virtually ordered species N such that
equal elements e of M = S(N) always
belong only to equal species N and that
equal species N are always virtually
ordered in the same way. We denote the
ordering relations of the given virtual
orderings of R and the N by > and <,
and we define a virtual ordering of M as
follows: We write ¢’ > ¢”, or e’ < ¢/, if
either N’ > N” or both N' = N” and
e > e"; we write e’ > e”, or ¢” < ¢/, if
e’ < e” is impossible; we write ¢’ > e” if
e’ > ¢”, and, moreover, ¢ # e”.... We
call the species M, once it is virtually
ordered as above, (or its ordinal number
m) the ordinal sum [Jordnungsgemdfe
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Summe] of the species N (or of their
ordinal numbers n), and we call the for-
mation of this sum the addition of the N
(or of the n). In case R possesses a finite
complete ordinal number or the ordinal
number w, the sign + is used in the
ordinary way to denote addition.”
(Brouwer 1925a, p. 456-457.)

“Let M be a denumerably infinite
ordered species that is everywhere dense
in the strict sense and whose elements
are denumerated by the fundamental
sequence g, gs, g, - - .. We put S(g;, g,

.oy 9y) =8, In M we establish an
‘intercalation partition’ [‘ Einschaltungs-
teilung’'T; that is, we generate in M, by
an unlimited sequence of free choices, a
left and a right subspecies (an arbitrary
element of the left subspecies preceding
an arbitrary element of the right one) in
such a way that the left and the right
subspecies are determined successively in
81, 8g, 83, - . ., the procedure being such
that only a single element g,, of s, may
remain excluded from these subspecies of
s, and that for every v the element
e, , ,» if it exists, is identical either with
9., or with g, ;. The species of the inter-
calation partitions ¢ of M (corresponding
to arbitrary distinct denumerations of M)
that ‘coincide’ with a certain intercala-
tion partition £, of M, in the sense that
an element of the left subspecies of one
partition never lies to the right of an
element of the right subspecies of the
other, is what we call an intercalation
element of M, and t, as well as ¢, is a
‘partition’ of this intercalation element.
We virtually order the species of the in-
tercalation elements e of M by adopting
the following stipulations: we write
e’ < e if we can specify a partition ¢’ of
e’, a partition ¢” of ¢”, and two elements
g, and g, of M that belong to the right
subspecies of ¢ and to the left subspecies
of ¢", respectively; we write ¢’ < e” if
e’ > ¢” is impossible ; we write e’ < e” if
¢ < e¢” and also e # e”. The method
already used several times above yields
the result that these stipulations indeed
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entail the validity of the five ordering
properties. We call the thus virtually
ordered species of intercalation elements
of M the conttnuum over M and denote it
by K(M).” (Brouwer 1925a, p. 467.)

“The well-ordered species are ordered
species that are defined on the basis of
the following stipulations:

(1) An arbitrary element of a well-
ordered species is either an element of the
first kind and will be called a ‘full
element’ [[‘ Vollelement’]) or an element of
the second kind and will be called a ‘null
element’ [ Nullelement’]);

(2) A species with a unique element,
once this element has been provided with
either the predicate of being a full
element or the predicate of being a null
element, will be called a well-ordered
species and, more particularly, a primi-
tive species [[Urspezies]|;

(3) From known well-ordered species
further well-ordered species are derived
through the first generating operation,
which consists in the addition of a non-
vanishing finite number of known well-
ordered species, and through the second
generating operation, which consists in the
addition of a fundamental sequence of
such species.

“Every well-ordered species that
played a role in the construction of the
well-ordered species F' according to the
preceding paragraph is called a construc-
tional underspecies [[konstruktive Unter-
spezies]| of F. The constructional under-
species that played a role in the last
generating operation of F are called the
constructional underspecies of first order of
F and are distinguished from one another
by a subscript v, hence are denoted by
F,F,...,F, or by F,, F,, F,....
The constructional underspecies of the
first order of an F, are called the con-
structional underspecies of second order
of F and are denoted by F,, F,,,

.. F,, or by F,,, F,5, F5,.... The
constructional underspecies of the first
order of a F, .. are called the con-
structional underspecies of (n + 1)th order
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of F and are denoted by F, ., i,
] Fv1~-~v,,m or by Fv1~~~v,,1>
F, e Fys ... (F itself is taken
as the constructional underspecies of Oth
order of F). Thus every primitive species
used in the construction of ¥ turns out
to be a constructional underspecies of some
finite order of F (although for suitably
chosen primitive species of F' this order
can, of course, increase beyond any
bound). To see that, we need only use the
inductive method, that is, observe that the
property in question is satisfied for primi-
tive species, that, if § = ¢, + & + ---
+ &, on the basis of the first generating
operationand ¢ = & + &, + -+ + €na
on the basis of the first generating opera-
tion (m > 2), the property in question,
in case it holds for ¢, &, ..., &, as well
as for ¢, also obtains for ¢, and, finally,

Fvln-v,.‘zv .
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basis of the second generating operation,
the property in question, in case it holds
for every ¢,, also obtains for ¢.

“By means of the inductive method
we see that for an arbitrary well-ordered
species F the species of the subscript
sequences of the elements, as well as the
species of the subscript sequences of the
constructional underspecies, forms a re-
movable subspecies of the species of
finite sequences of natural numbers;
further, that for an arbitrary construc-
tional underspecies F,, .., of F the car-
dinal number of the F,, .., , is known.”
(Brouwer 1926, pp. 451-452; see also
Brouwer 1918, pp. 22-23, and Heyting
1955, pp. 33-34.)

The translation is by Stefan Bauer-
Mengelberg, and it is printed here with
the kind permission of Professor Brou-

that, if ¢ = ¢ + & + & + ... on the wer and Walter de Gruyter and Co.

§1

Following § 5 of my paper ““Zur Begriindung der intuitionistischen Mathematik 1"’
we define the k-intervals and the A-intervals in the ‘“naturally ordered’ species of
finite binary fractions ;! in particular, we shall say that these intervals are «"-intervals
or AM-intervals, respectively, if their length is equal to 2.

By a point of the linear continuum we understand an unlimited sequence of A-
intervals (the ““generating intervals’ of the point) such that each of them is con-
tained, in the strict sense, in the preceding one; their size, therefore, converges
positively? to zero.

If in a set every choice that does not lead to the inhibition of the process generates
a A-interval, while each of these A-intervals is contained, in the strict sense, in the
A-interval generated by the preceding choice, the set is called a point set of the linear
continuum.

Let the species of those points p of the linear continuum that ‘“coincide” with a
certain point p, of the linear continuum (by which we mean that every generating
interval of p completely or partially covers every generating interval of p,) be called

L Brouwer 1925, p. 253. [*‘In the number continuum an interval with the end points a.2-" and
(a + 1)2-" or with the end points @.2-" and (@ + 2)2~" (where a is an arbitrary integer and n an
arbitrary natural number) is called a k-interval or a A-interval, respectively.”]]

[““Naturally ordered’’ means in order of increasing magnitude. Binary fractions are fractions
of the form a.2-", where a is an integer and n a natural number. Brouwer adds the word ‘‘finite”’

T
because he regards these fractions as finite sums of the form b + X «,2-7, where b is an integer,
v=1

r is & natural number, a,, for 1 < v < r — 1, is equal to 0 or 1, and «, is equal to 1.]]
2 Brouwer 1923b, p. 6 [above, p. 339].
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a point core [ Punktkern]) of the linear continuum. In what follows we shall denote the
point cores of the linear continuum by y.

The points or point cores that are generated exclusively by A-intervals partially
covering the interval (0, 1) are called points or point cores, respectively, of the unit
conttnuum. In what follows, the point cores of the unit continuum are denoted by .

In a way similar to that followed in § 7 of my paper ““ Zur Begriindung der intuition-
istischen Mathematik I1°’3 for the species of the intercalation elements of a denumer-
ably infinite ordered species that is everywhere dense in the strict sense, the species
of the point cores of the linear continuum or of the unit continuum can also be
virtually ordered ; once provided with this virtual ordering, this species is called the
linear continuum or the unit continuum, respectively.

If the “naturally ordered” species of finite binary fractions between 0 and 1 is
denoted by M, we shall say that the point core = of the unit continuum and the
element e of K(M)3 coincide if no element of the right, or left, subspecies of an inter-
calation partition of M that belongs to e can ever lie to the left, or right, respectively,
of a generating interval of a point of 7. These coincidence relations obviously deter-
mine a similarity correspondence* between the unit continuum and K(J).

By a real function, or, for short, a function, f(x) of x we understand a law that, with
each of certain point cores of the unit continuum, which will be denoted by ¢ and form
the “domain of definition’ of the function, associates one point core of the linear
continuum, which will be denoted by n = f(¢).

A function f(x) is said to be negatively continuous for the value &, if, for an arbitrary
fundamental sequence ¢,, &,,... that converges positively to ¢,, the fundamental
sequence f(£;), f(€,), ... converges negatively? to f(£,).

A function f(z) is said to be positively continuous for the value ¢&,, or, for short,
continuous for the value &, if for every positive rational ¢ a positive rational a, can
be determined such that for |¢ — £| < a, the inequality |f(£) — f(&,)] < & holds.

A function that is negatively continuous or positively continuous for every ¢ will
be called, for short, a negatively continuous or a continuous function, respectively.

A function f(x) is said to be uniformly continuous if for every positive rational ¢ a
positive rational a, can be determined such that for |, — £;| < a, the inequality
|f(£2) — f(£1)] < & holds.5

A function f(x) is said to be discontinuous for the value &, if a natural number n
and a fundamental sequence ¢, £,,... that converges positively? to &, can be
specified such that f(£,), f(&,), . . . all differ from f(&,) by more than 1/n.

3 Brouwer 1925a, p. 467 [above, p. 456]).

4 See Brouwer 1925a, p. 455 [[above, p. 455]).

5 It is only for the sake of simplicity that the definitions of continuity have been brought into
the metric form above, of which they are independent so far as their content is concerned. To see
that, we resort to the denumerably infinite, everywhere dense, ordered sets u’ and u”, of ordinals
1 + n + 1 and =, respectively, that generate the intercalation elements corresponding to the
z and y, respectively ; we denumerate p’ and p” by fundamental sequences g7, 93, . . . and g7, g2,

.., respectively, we denote &(g3, g3, ..., g;) and &(g7, g2, . . ., 95) by s, and s, respectively, and
we understand by an 4, or an %, a closed interval of u’ or u”, respectively, whose end elements
belong to s; or s, respectively, but whose interior contains at most one element of s or s/, respec-
tively. On this basis, then, a untformly continuous function, for example, is a function such that,
given an arbitrary denumeration of u’ and an arbitrary denumeration of p”, we can, for every
natural number m, determine a natural number » such that, if ¢; and ¢, belong to the same 17},

f(£1) and f(§;) belong to the same 1.
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A function that is discontinuous for any specific value belonging to its domain of
definition is also said, for short, to be discontenuous.

A function f(x) is said to be full [voll] if its domain of definition coincides with the
unit continuum.

THEOREM 1. Every full function is negatively continuous.

Proof. Let f(x) be a full function, let £, be an arbitrary point core x, and let £,
£, ... be a fundamental sequence of point cores x that converges positively to &,.
We now assume for the moment that there exist a natural number p and a funda-
mental sequence p,, p,, ... of monotonically increasing natural numbers such that
|f(£5,) — f(&0)| > 1/p for every v, and we define a point core ¢, of the unit con-
tinuum by starting from an unlimited sequence f, of generating intervals of a point
belonging to £, and then constructing, by means of an unlimited sequence of choices
of A-intervals, a point £, of the unit continuum in such a way that we temporarily
choose, for every natural number n that we have already considered, the first n
intervals identical with the first » intervals of f, but reserve the right to determine,
at any time after the first, second, ..., (m — 1)th, and mth intervals have been
chosen, the choice of all further intervals (that is, of the (m + 1)th, (m + 2)th, and
so on) in such a way that either a point belonging to &, or one belonging to a certain
&,, is generated. Then the function f(x) is not defined for the point core £, containing
Fz; this brings us to a contradiction, and our assumption has proved to be illegiti-
mate. But this means that the function f(x) is negatively continuous.

Theorem 1, which is an immediate consequence of the intuitionistic point of view
and has since 1918 frequently been mentioned by me in lectures and conversations,
suggests the conjecture that Theorem 3 below, which asserts much more, is valid; I
did not, however, succeed in proving it until much later.® The object of the following
two sections is to present this proof in as lucid as way as possible.

§2

Let M be an arbitrary set, let u be the denumerably infinite set of finite (inhibited
or uninhibited) choice sequences Fg, .., upon which M is based (where s and the
n, represent the natural numbers chosen one after the other for the choice sequence
in question), and let a natural number 8 be associated with each element of M.
Then there is distinguished in p a removable numerable subset x, of uninhibited
finite choice sequences such that with an arbitrary element of y, the same natural
number B is associated for all elements of M issuing from y,, while furthermore a
proof [Beweisfithrung]}®* A is given that makes it apparent, for an arbitrary unin-
hibited element of y, that every uninhibited infinite choice sequence issuing from it
possesses an [[initial]] segment belonging to u,. (For an uninhibited element of n is to
be taken as belonging to y, if and only if for it—but for none of its proper segments
—the decision with respect to B, according to the algorithm of the rule establishing
the correspondence, is not postponed to further choices; it is of course by no means
excluded here that we can afterward also specify elements of n that neither belong

6 See Brouwer 1924 and 1924a [Jand also 1923, pp. 3-5]).
62 [In a paper published in English (1953) Brouwer uses the expression ‘‘mathematical argu-

ment . ]|
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to p; nor possess a segment belonging to p, but have the property that the same
natural number is associated with all elements of M that issue from such an element
of u.)

If we say that an element of p is secured when it either is inhibited or possesses a
(proper or improper) segment belonging to u,, then p splits into a numerable set +
of secured and a numerable set o of unsecured finite choice sequences, and the proof
h shows that an arbitrary F; is securable, that is, that every infinite choice sequence
that issues from it and is uninhibited for M possesses a certain segment belonging to
p1." Let kg, ..., be a proof in which the securability of the element Fy, .., of o
is derived ; then what this securability and this proof rest upon is, if we leave aside
the fact that u, and the inhibited choice sequences of u are given, exclusively the
relations, obtaining between the elements of u, that are formed by the composition
of [welche sich zusammensetzen aus] elementary relations e of the kind obtaining
between two elements F,,, .., and Fy, ., m, ., of which one is an [immediate]]
extension [[Verlingerung]’® of the other. Now, if the relations employed in any
given proof can be decomposed into basic relations, its “canonical” form (that is,
the one decomposed into elementary inferences®) employs only basic relations; in the
case of the canonical form k,, ..., of the proof A, .., we can therefore ultimately
infer the securability of Fl,, .., exclusively from a combination of the species
Seny..n,» formed from the elementary relations e connecting Fl, ..., to Fg, .

Ny -1
and to the Fy, .., ,, with a property previously derived from arbitrary elementary
relations e and also from the fact that u; and the inhibited choice sequences
are given. For the last step of kg, ..., we therefore must previously have established

the securability either of F, ..,  orofall F, .., ..
If we now call the derivation of the securability of an F,,,..,,, from that of

7 When carefully considered from the intuitionistic point of view [Intuitionistisch durchdacht]),
this securability is seen to be nothing but the property defined by the stipulation that it shall hold
for every element of u; and for every inhibited element of u, and that it shall hold for an arbitrary
Fpn,...n, 88 soon as it is satisfied, for every v, for Fg, .., ,. This remark immediately implies
the well-ordering property for an arbitrary Fy,,..,,. The proof carried out in the text for the
latter property, however, seems to me to be of interest nevertheless on account of the propositions
contained in its elaboration.

72 [In a paper published in English (1953) Brouwer uses the expression ‘‘immediate descendant’.]]

8 Just as, in general, well-ordered species are produced by means of the two generating opera-
tions from primitive species (Brouwer 1926, p. 451), so, in particular, mathematical proofs are
produced by means of the two generating operations from null elements and elementary inferences
that are immediately given in intuition (albeit subject to the restriction that there always occurs
a last elementary inference). These mental mathematical proofs that in general contain infinitely
many terms must not be confused with their linguistic accompaniments, which are finite and
necessarily inadequate, hence do not belong to mathematics.

The preceding remark contains my main argument against the claims of Hilbert’s meta-
mathematics. A second argument is that the way in which Hilbert seeks to settle the question
(which, incidentally, was taken over from intuitionism) of the reliability of the principle of
excluded middle is a vicious circle ; for, if we wish to provide a foundation for the correctness of
this principle by means of the proof of its consistency, this implicitly presupposes the principle
of the reciprocity of the complementary species and hence the principle of excluded middle itself
(see Brouwer 1923c, p. 252) [Concerning this passage Brouwer (1953, p. 14, footnote 1) writes:
“The equivalence of the principles of the excluded third and of reciprocity of complementarity,
mentioned there in a footnote by way of remark, subsequently has been recognized as nonexistent.
In fact, as was also shown in the present paper, the fields of validity of these two principles have
turned out to be essentially different”.]).
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Fomy..m,_, & L-inference and the derivation of the securability of an F,,, .., from
that of all Fpp,..m, & f-inference, then the proof k.., forms a well-ordered
species of which every full element is formed by an elementary inference that, in case
it constitutes the derivation of the securability of an element of o, represents either
a f-inference or a {-inference.

We now assert that every element F, .., of o possesses the well-ordering property
[Wohlordnungseigenschaft]], that is, that the subset M, .., of M determined by
Fg,, ..., splits into a species of subsets M, that is similar to the species of the full
elements of a well-ordered species T, ..., each of these subsets being determined
by a finite initial segment F, of choices that contains Fy, ..., and belongs to u,. The
species T, .., is constructed by means of generating operations w of the second
kind, of which each corresponds to the inversion of the continuation, by a new free
choice, of a certain finite initial segment of choices that is uninhibited for M. Then
to a new choice that is inhibited for M or terminates an element of u, there corres-
ponds, for the operation w in question, a primitive species consisting of a null element
or a full element, respectively.

For the proof of this assertion we denote by f;,,...,, the species of those elements
of ¢ whose securability we ascertain in the course of k.., , and we say that a
constructional underspecies u of k,, ..., possesses the well-ordering property if every
element of ¢ whose securability we ascertain in the course of u possesses the property
of being well-ordered. Further we shall say that the preservation property [Erhaltung-
seigenschaft] holds for a constructional underspecies u of ki, ..., if, in case every
element of f;, .., upon whose securability the proof u is based possesses the well-
ordering property, every element of f, ..,, whose securability is derived in the
course of u likewise possesses the well-ordering property. Then, as we observe the
generation of kg, .., , we see by means of the inductive method that for every
constructional underspecies of k,,...,, hence in particular for kg, .., itself, the
preservation property holds. But from the preservation property for k.., the
well-ordering property immediately follows for k,, ..., , hence for Fg, .., .°

In case M is a finitary set, the well-ordered species T, ..., has the same content®®
as a well-ordered species @, ...,, that is constructed without the use of null elements
and, moreover, in a way parallel to the construction, discussed above, of T, ...,,
namely, in a way such that to each operation w, used for the construction of 7', ...,,

9 If the securability of Fg,, .., is ascertained in several proofs k,,...,, or in several places of
one and the same proof k.., the corresponding T, .., all are generation-equivalent, as
follows by virtue of the inductive method when we observe the generation of one of them. This
remark, incidentally, is superfluous for the proof above. [*“Two well-ordered primitive species F’
and F” have the same generating value [[besitzen denselben Erzeugungswert]), or are said to be
generation-equivalent ([erzeugungsgleich]), if the single element of which each of them consists is
either a full element for both or a null element for both. Two well-ordered species F’ and F” are
said to be generation-equivalent if for an arbitrary v the two constructional underspecies of the first
order F';, and F'; either both fail to exist or both exist and are generation-equivalent.” (Brouwer
1926, p. 452.)])

% [“Two well-ordered species (or subspecies of well-ordered species) F’ and F” are said to have
the same content [heillen tnhaltsgleich]] if the species of the full elements of F’ and the species of
the full elements of F” are similar.”” (Brouwer 1926, p. 453.)]
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there corresponds a generating operation v, of the first kind used for the construction
of Qsp,...n,» the terms of v, being similar, in sequence, to the species of the full
elements of those terms of w, that contain full elements. The well-ordered species
Qsn, .., is therefore constructed by the exclusive use of generating operations of the
first kind. But from this it follows that the species of elements of Q,, ..., as well as
the species of full elements of T, ..., , is finite, hence that in particular for every
natural number s the species of the full elements of 7 is finite. Thus a natural number
z can be specified such that an arbitrary element of 1, possesses at most z subscripts ;
therefore the natural number B, associated with an arbitrary element e of M is
completely determined by the first z generating choices of e, and we have established
the property expressed in the following

THEOREM 2. If with each element e of a finitary set M a natural number B, is associ-
ated, a natural number z can be specified such that B, is completely determined by the first
z choices generating e.

§3

In the unit continuum we now determine for every natural number v the k,-
intervals ki, ky, . . ., k{, that is, the A“***+D.intervals, ordered from left to right, that
partially cover the interval (0, 1). Then the finitary point set J formed by the
nestings of intervals k%, k{2, ks, ... (where each interval is contained, in the
strict sense, in the preceding one) coincides with the species of the x; that is, every
such nesting of intervals belongs to an z, and every z contains such a nesting of
intervals.1?

Now in the case of a full function f(x) a nesting of A-intervals A;, A,, . . . is associated
with every nesting of intervals kv, k¥2), ..., and by Theorem 2 there exists, for
every natural number v, a natural number m, (of which we may assume that it does
not decrease with increasing v) such that A, is determined by the choice of k1, k{2,
Cey kﬁ,‘,‘v"'v). Hence for each v only a finite number [, of A-intervals can occur as A,, and
there exists for them a maximal width b, that converges to zero as v increases beyond
all bounds.

Let us denote by ¢{” the interval that is concentric with > and whose width is 2
of the width of £{’, and let P, and P, be two arbitrary point cores of the unit con-
tinuum that are <€2-*'-3, that is, <} of the width of the k,-intervals, apart. Then a
t») can be determined that contains both P, and P,, and by means of this {# a
nesting of intervals k{1, ..., k®, kY, k°2), ... belonging to P, and a nesting of
intervals k0, ..., k¢, kT2, k52, . .. belonging to P, can be determined.

Let ¢ be an arbitrary positive quantity that is positively different!®® from zero. If
we choose v, so great that b, < ¢ and if we put 27*™.~% = q,, then, according to the

10 If in an analogous way we consider a suitable finitary set of pairs of points that coincides with
the species of the pairs of point cores of the unit continuum, then on the basis of Theorem 2 the
impossibility of splitting [[ Unzerlegbarkeit]) the continuum readily follows, that is, the property that,
for an arbitrary splitting of the unit continuum into a discrete species of subspecies, one of these
subspecies is identical with the unit continuum.

102 TOn this notion see Brouwer 1919, p. 3, lines 7u-5u, and 1923d, p. 254, lines 3-5; compare
Definition 1 in 2.2.3 of Heyting 1956, p. 19.].
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second paragraph of the present section, to any two elements of J for which pu,, uo,
- +» fm,, are equal there correspond two “values” of f(z) whose difference is less than

b,,. hence less than e, in absolute value. According to the third paragraph of the
present section, therefore, it is also the case that to any two point cores P, and P,
of the unit continuum that are <a, apart there correspond two values of f(x) whose
difference is less than ¢ in absolute value, so that f(x) turns out to be uniformly
continuous and we have proved

THEOREM 3. Every full function is uniformly continuous.



