Chapter 4

Brouwer’s proof of the bar
theorem

4.1 'The theorem and its philosophical interest

A formulation of the bar theorem must be postponed until some basic concepts
that figure in it have been introduced, but its place in intuitionism can already
be indicated: it is the apotheosis of Brouwer’s reconstruction of mathematics,
both mathematically and philosophically. The bar theorem allowed him to go
beyond other varieties of constructivism without betraying the principles of in-
tuitionism. Responsible for this is mainly a corollary of the bar theorem, the fan
theorem. Using that, Brouwer proved that all total functions on the continuum
are continuous, and even uniformly so. The first result has the important con-
sequence that in dealing with such functions, approximations will always work
fine. The second is of vital importance for a satisfactory intuitionistic theory of
integration (and, hence, of probability). It also helps considerably in finding in-
tuitionistic counterparts to theorems in classical analysis. On the intuitionistic
construals of the continuum and of logic the two continuity theorems are valid;
on the respective classical construals, they are not. Yet classically they are
valid for gertain subclasses of functions, and the intuitionist may try to trans-
form classical theorems that hold for such subclasses into intuitionistic theorems
on all total functions. Even though intuitionistic mathematics is autonomous,
the aim to find such counterparts is sound from an economical as well as from
a missionary point of view.

Classically, the bar and fan theorems themselves are easily established; the
fact that, having gone through the more complicated process of establishing
them intuitionistically, Brouwer could prove theorems that are not classically
valid, is accounted for by the presence of a third ingredient in his proofs,'al‘é
continuity principle discussed in the previous chapter. It is this classically false
principle that connects the bar theorem to the intuitionistic modelling of the
continuum using choice sequences.
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The philosophical value of the bar theorem lies both in its content—it makes
the full continuum, which had always been intractable for constructivists, con-
structively manageable—and in the way its proof fully exploits the intuitionistic
conceptions of truth as experienced truth and of proofs as mental constructions.

In this chapter we will go through one of Brouwer’s proofs of the bar theorem.
Although it is a bit technical, it is not particularly difficult, and moreover, we
will find the notion of intentionality at the very heart of it. It comes into play
in the deep reflection on the activity of the creating subject that the proof
depends on. It was from this reflection that Brouwer’s concept of a canonical
proof emerged, which we discussed in chapter 2.

In the literature on intuitionism, the reader will find several versions of
the proof, e.g. Kleene [95, 6.12], Heyting [75, 3.4], Dummett [49, 3.4]. They
all provide different perspectives, and it pays to compare them. To facilitate
reading Brouwer in the original, I will discuss one of his own presentations (and
often use his own notation). The ones included in the anthologies edited by
Mancosu (the proof from 1924 [19]) and van Heijenoort (the proof from 1927
[21]) are probably the most widely available.?® They are different, although this
is mostly a matter of cosmetics; I will discuss the 1927 version, and comment
on the differences afterwards.?®

Now the the key notions can be defined, and the theorem stated.

In general, mathematicians are not as interested in proving theorems about
particular real numbers as they are in proving theorems about classes of real
numbers and functions of real numbers. It will not do to collect choice sequences
in a set in the Cantorian sense, because, intuitionistically, such sets can be no
larger than denumerably infinite, which is too small for the continuum and many
of its subsets. Rather, choice sequences are held together in a spread (‘Menge’,
in Brouwer’s original, somewhat confusing terminology, as it is the German word
commonly used for Cantor’s sets). Brouwer regretted that his definition suffers
from a certain prolixity ([20, footnote 2]):

A spread is a law on the basis of which, if repeated choices of arbi-
trary natural numbers are made, each of these choices either gener-
ates a definite sign series, with or without termination of the pro-
cess, or brings about the inhibition of the process together with the
definitive annihilation of its result; for every n > 1, after every un-
terminated and uninhibited sequence of n — 1 choices, at least one
natural number can be specified that, if selected as the n-th number,
does not bring about the inhibition of the process. Every sequence
of sign series generated in this manner by an unlimited choice se-
quence (and hence generally not representable in a finished form) is
called an element of the spread. We shall also speak of the common
mode of formation of the elements of a spread M as, for short, the
spread M. [20, pp.244-245), translation adapted from [67, p.453]

The last line of the definition indicates that a spread is a special kind of
species.
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Because, as we saw in chapter 1, Brouwer holds that mathematics is essen-
tially languageless, in this definition ‘sign’ and ‘sign series’ are to be understood
‘in the sense of mental symbols, consisting in previously obtained mathematical
concepts’ [28].

In a footnote to the above definition, Brouwer adds that the possibility of
terminating the process at a certain point can be replaced by the possibility of
having all choices from that point on generate ‘nothing’. This ‘nothing’ is an
empty sign series, but nevertheless an object, on a par with, for example, the
empty set.

By way of explanation, this definition can be rephrased if we introduce the
notions of a spread law and a correlation law.

The objects chosen in the choice sequences in the spread may be natural
numbers but also any other kind of mathematical object (the condition being
that the objects have been constructed prior to the spread). In the latter case,
we conceptualize making a choice in a choice sequence in the spread as first
choosing a natural number and then obtaining, via a mapping from the natural
numbers to a fixed, countable species of objects of the other type, the object
desired. This mapping is the correlation law.

For generality, Brouwer always assumes a correlation law; one obtains choice
sequences of natural numbers simply by mapping each natural number to itself.
Brouwer uses the term ‘choice sequence’ both for the original sequence of natural
numbers and for what you get by applying the correlation law to it.

A spread law either admits a given finite segment of natural numbers, or
inhibits it. There are three conditions on a spread law.

1. It should be decidable. That is, we should have a means to tell in finite
time whether a given sequence (ag, ai,... @n) should be used in the con-
struction. For example, we would not be sure how to proceed building the
spread if our next step depended on an open problem of which we have
no idea when it will be solved.

2. Of each admitted sequence, at least one immediate extension should be
admitted as well. Each admissible sequence (ag, ay, ... an), must have an
immediate extension (ao, ai,...ay, @n+1) which is likewise admissible.

3. If a’sequence is admitted, then so should all of its initial segments. This is
a natural demand, as we use these sequences to bundle choice sequences,
there should be no gaps or jumps. If (ag,a1,...an,an41) is admissible,
then so is (ag,a1,...a,).

The admitted sequences form a growing tree, hence they are also known as
nodes; that is, a node in the tree is identified with the path leading up to it.
The root or top (I think of trees as growing downwards) of the tree is the empty
sequence. Brouwer calls the paths through a tree, whether finite or infinite, its
elements. By ‘choice sequences’ in the pregnant sense of the word, the infinite
paths are meant.
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Of a pair of nodes (ao,a1,...a,) and (ag,a1,...an,...anik), we call the
second a descendant of the first, and the first an ascendant of the second. If
k =1, we speak of an immediate descendant and an immediate ascendant.

The tree of admitted sequences may be called the underlying tree of the
spread (Brouwer does not use this term, but speaks of ‘the species of choice
sequences upon which the spread is based’). The correlation law maps the
elements of the underlying tree of natural numbers to the desired objects; like
the underlying tree, the spread consists of nodes that form a tree.

To an admissible sequence, the correlation law assigns either an object, or
‘nothing’. The latter option lets us simplify the definition of a spread by drop-
ping the possibility of termination: one gets the same effect of a finite spread
by always assigning, to each admissible sequence, ‘nothing’ from a certain point
onwards.

An inadmissible sequence is inhibited. It will not play a role in the generation
of the elements in the spread anymore, as the correlation law does not apply to
such a sequence.

A special spread is the universal spread, the spread of choice sequences of
natural numbers which inhibits no sequences, therefore admitting all.

As another example, consider the following spread J. Let Iy, I1,I5,... be
an enumeration of the intervals of the continuum of the form

a a+2
2k+1’ 2k+1

where 2 < a + 2 < 25! 5o that the boundaries of these intervals are > 0
and < 1. (That they can be enumerated follows from the fact that each such
interval is determined by a pair of natural numbers (a, k), and such pairs are
enumerable.) The correlation law of J assigns to n the interval I,,. Let the
spread law be: (ag,a1,...an,a,41) is an admissible extension of {ag,ay, ... an)
exactly if interval I, ,, is properly contained in interval I, . The elements of
J are convergent sequences of intervals of [0, 1]. One can prove that J coincides
with that interval; we will use J in our discussion of the fan theorem below.

Any node in a tree determines or dominates a particular subtree, namely,
the subtree consisting of all paths that pass through that node. Equivalently,
the subtree consists of the sequences that share the initial segment defining that
node. We will call this subtree the subtree dominated by that node. A species of
nodes determines a species of subtrees. As a spread is also a tree (in particular,
it is a tree in which every node has at least one immediate descendant) we can
also speak of subspreads.

The notion of a bar is defined as follows. If B is a bar for a spread M, this
means that each of the infinite choice sequences in the underlying tree of the
spread (call it U) has a finite initial segment which is an element of B:

Va € Udn(an € B)

A speties of nodes is a bar, that is, if every infinite path though the tree has at
least one node in common with it (‘hits the bar’). A bar determines a subtree,
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namely the tree starting at the root of the underlying tree and ending in the
nodes that have just hit the bar.

A first statement of the bar theorem as proved by Brouwer in 1927 would
be: if B is a bar, then the species of nodes that have just reached B can be well-
ordered. We will see a more precise statement in a moment, but this formulation
suffices to give a clue why this theorem is useful.

Generally, the number of immediate successors of a node in a tree may be
finite or infinite. A tree in which every node has only finitely many immediate
successors is called a finitary tree or a fan. One also says that such a tree
is finitely branching. The same goes for the underlying tree. The spread J
that we just saw is in fact a fan. As we will see later, a corollary of the bar
theorem is the fan theorem: if B is a bar for a fan, we can effectively determine
a bound on the length of the paths to the bar. As Brouwer also showed how to
represent the continuum by a fan, the fan theorem enables him to prove, given
some suitable bar, theorems about the continuum by proving theorems about
choice sequences of a certain bounded length. The latter certainly are much
more managable than the continuum itself.

Brouwer seems to have proved the bar theorem solely for the purpose of es-
tablishing this corollary. From a classical point of view, the fan theorem is the
contraposition of Kénig’s lemma, which was proved later: ‘If a fan contains in-
finitely many nodes, it contains an infinite path’. But intuitionistically, Kénig's
lemma is not valid, so it cannot be used to obtain the fan theorem. The problem
with the lemma is that it doesn’t enable one actually to construct an infinite
path through the fan. I will come back to the fan theorem and its relation to
Koénig’s lemma later.

In order to give a more precise statement of the bar theorem, we need the
notion of a thin bar, and make explicit a condition on B.

. A thin bar is a bar that contains no more elements than necessary to be a
ar:
beBAa<b—a¢B

where a and b are variables for elements, and a < b means ‘b is an extension of a’.
That is, a thin bar never contains a pair of nodes one of which is a descendant
of the other. With respect to_its property of being a bar, such descendants are
superﬂuous. (Brouwer did not use the term ‘thin bar’ in print before 1954 [34]).

The condition is that the bar B should be decidable, that is, of any node we
should be able to tell in finite time whether it belongs to the bar or not. The
condition of decidability is not explicit in Brouwer’s proofs of 1924 and 1927,
but it is essential, as Kleene has shown; we will see a version of his argument in
the comments on the proof of the bar theorem below. If one thinks of bars that
are implicitly determined by the continuity principle, as Brouwer does in the
two proofs mentioned, this condition is surely fulfilled. His point of departure is
that of a spread M and a function that assigns to each element of M a natural
number 3. The continuity principle then says that for every sequence a number
n can be found such that you need only the first n choices in the sequence to
calculate the number 3 that the function assigns to it. Given an initial segment
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of a choice sequence—which corresponds to a node in the tree—determine n for
that sequence; the segment belongs to the bar exactly if its length is equal to
or greater than n, and this we can decide.

The bar theorem can now be stated as: if B is a decidable bar, then it
contains a well-ordered thin bar.

So far, I have not said how the notion of well-ordering is defined in intu-
itionistic mathematics. An example will show that it cannot be the classical
definition.

In the classical definition, a set is well-ordered if it is ordered and every
non-empty subset has a first element. That every set can be well-ordered in
this sense is implied by the axiom of choice. But that axiom does not hold in
intuitionistic mathematics, for it does not tell you how to construct that first
element. Here is an example of a species which can intuitionistically be shown
non-empty, but of which we have yet no construction for an element. Let p
be an as yet undecided proposition, say, Goldbach’s conjecture that every even
number is the sum of two odd primes. Now define the species A as follows:

z€A=(xz=0Ap)V(z=1A-p)

It is easy to see that A cannot be empty. Assume A contained no elements. On
that assumption, both the condition for the inclusion of 0 and the condition for
the inclusion of 1 must have failed. Then both p and —p must be false, which is
to say, -p A ——p is true. But that is a contradiction, so the assumption that A
is empty must be false.

It is also easy to see that A cannot contain any element other than 0 or 1,
as such an element would simply fail both conditions. So if z is an element of
A, then it must be 0 or 1. It follows, therefore, that A is a subspecies of, for
example, the species {0, 1,2}.

However, we cannot indicate an element of A. To do so requires that we
have established p or —p, which, by hypothesis, we have not.

All this means that there is a non-empty subspecies of {0, 1,2} of which we
cannot say (now) that it has an element, let alone a first element, which would
be required by a classical well-ordering. If we adopt that definition of a well-
ordering in intuitionism, then the species {0, 1,2} would not be well-ordered.

Hence Brouwer had to resort to another definition of the notion. For this, he
reached back to Cantor’s original suggestion from 1883 (the now usual classical
definition was a later suggestion of his) and defined well-ordering by induction.
According to this definition, a species is well-ordered if it can be generated
inductively, as follows:

Induction basis

Any one-element species A is well-ordered. Brouwer calls such a species a
primitive species.



Induction step

(a) Generating operation of the first kind
If Ay, ..., A, are a positive, finite number of disjunct well-ordered species,
then their ordered sum is a well-ordered species. The ‘ordered sum’ of the
A; is their union, where each species remains ordered in its original way,
but the clause is added that, if j < k, each element of A; precedes each
element of Ax: a < b forac Aj,be Ay

(b) Generating operation of the second kind
If Ap, A1, Ay, ... is a denumerable sequence—hence, on the intuitionistic
understanding of infinity, given by a construction method—of well-ordered
species, then their infinite ordered sum is also a well-ordered species. Here,
ﬁ < b is defined in the same way as in the generating operation of the first
ind.

It is easily shown that every well-ordered species has a first element (in
the intuitionistic sense, i.e., we can exhibit it), and that every element in a
well-ordered species either has an immediate successor or is the last element.
Together these properties ensure that for a well-ordered species we always have
an effective method to run through its elements. Hence every well-ordered
species is decidable, i.e., for any well-ordered species we have a method to tell
whether a given element belongs to it or not.

Moreover, from this definition it is easily proved (by induction) that of ev-
ery well-ordered species it can be indicated either that it is finite or that it is
denumerably infinite.

For reasons that will become clear later, it is convenient to have the option
of labelling the elements in a well-ordering either ‘full’ or ‘null’. There is no
intrinsic connection between an element and its label; the labelling depends on
the particular use one wants to make of such a well-ordering. In our case, the
labelling will help to distinguish admissible sequences from certain unadmissible
ones.

We can now verify that {0, 1,2} is a well-ordered species according to this
new definition. The induction basis says that every one-element species is well-
ordered, and accordingly, {0}, {1} and {2} each are well-ordered. So by the
first induction step, their ordered sum is also a well-ordered species. This con-
struction i not unique: one might also first add {0} and {1}, and then, again
by induction step (a), add {0,1} and {2}. The order relations are the same in
both cases. Note that species such as A, which we used above to show that not
every non-empty subspecies of {0,1,2} has a first element, need not bother us
anymore. In the new definition, that no longer is the defining characteristic of
a well-ordering.

Of course, if we somehow have an immediate view of all the nodes in a thin
bar, then we can well-order it by sight. But such an overview is, but in the
simplest of cases, out of the question, either because the bar contains a large
and perhaps even infinite number of nodes, or because the proof that all infinite
paths through a node of the underlying tree have an initial segment in the bar is
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complicated enough to leave it opaque what the species of these initial segments
will look like; and often because of both. The whole point of the bar theorem is
that in spite of this, it can still be shown that the thin bar can be well-ordered.

Here is a simple-minded attempt at a proof of the bar theorem. Certainly
the infinite species of finite sequences of natural numbers, call it u, can be well-
ordered. For example, one can verify that the following rule will do. Let a < b
whenever a is shorter than b, and if a and b are of equal length, order them
according to smallest first differing number: e.g., (1,2,3,4) < (1,2,4,3). The
first element in the whole species will be the empty sequence (). By hypothesis,
the predicate ‘m is in the bar’, defined on pu, is decidable. Then so is the
predicate ‘m is in the thin bar’, as it is then decidable for a given m in the bar
whether any of its ascendants is too. This second predicate defines a subspecies
w1 of p; and we know that p is well-ordered. Doesn’t this prove the bar theorem?

It does not. We do not know now that p; is also well-ordered. For one
thing, it is a property of well-ordered species that we can determine either that
it is finite or that it is infinite, but of u; we cannot, in any case not yet. The
knowledge that a given predicate defined on an infinite well-ordered species
is decidable does not by itself give us a construction method for the species
of elements for which that predicate holds. One way of looking at it is that
the knowledge that the predicate provides when it holds is too local to derive
something global from it. What is called for, then, is a deeper consideration of
the nature of bars, so as to find a principle that somehow unifies the elements
that make up a bar and from which a construction method for the thin bar can
be derived. Thinking things through, Brouwer arrived at a method of induction,
and moreover, an induction that does not work its way from the root of the tree
to the thin bar, but from the thin bar to the root. Let us now see how this

works.

4.2 Brouwer’s proof

Brouwer’s strategy is to divide the proof of the bar theorem,

if B is a decidable bar, then it contains a well-ordered thin bar
into two parts:

1. Show that any proof of the antecedent, ‘B is a decidable bar’, can itself
be rendered as a certain well-ordered species;

2. Show how, given this well-ordered species, one constructs a well-ordered
thin bar, thus proving the consequent.

In intuitionistic proofs of implications, one usually doesn’t need much more
information about a proof of the antecedent beyond the fact that, in the case of
a conjunction for example, one indeed has a proof of each conjunct. In the proof
of the bar theorem, however, Brouwer analyses what a proof of the antecedent
could be like in great detail.

47



4.2.1 Part 1

What information is available to us to prove that B is a (decidable) bar? First
of all the spread M, and in particular, its underlying tree. The elements of the
underlying tree are infinitely proceeding choice sequences of natural numbers.
In the proof of the bar theorem we might as well work with initial segments of
these elements, precisely because the nodes that we want to well-order are all in
the bar. The species of initial segments of choice sequences of natural numbers
is the species i that we saw earlier. The elements of 1 can be divided into two
species: those that are admissible in M and those that are not admissible (the
latter species might be empty, i.e., in the case of the universal spread). The
elements of the bar B will all be in the first species.

Brouwer defines p; to be the thin bar contained in B. L1 is the specieé
of those elements of 1 such that they are in B and their presence in B is not
redundant, because they have no proper initial segment that is also in B. Every
sequence that hits B also hits ;1. We saw that B , as it is defined on the basis
of the continuity principle, is a decidable bar; therefore, so is ;.

An element of y is called secured (relative to the spread M) when we are
sure of its status with respect to the thin bar p1: that is, when we either know
that it has an initial segment in 1, or that it never will, ‘because it is inhibited.
Thus we can split the species i in two, namely, into the species 7 of secured
elements (relative to M), and the species ¢ of unsecured elements (relative to
l])V[ ), that is, of the elemtents that are admissible but that have not yet hit the

ar.

To have a proof that B is a thin bar means that, in particular, we have a
proof h that shows that, for any element of o, any infinite sequence o that is
nowhere inhibited and of which this element is an initial segment will at some
point n have hit B:

Va € M3n(an € B)

[n accordance with the intuitionistic interpretation of the logical constants any
proof h of this statement supplies us with a method to construct, for a g71ven
« in the spread, this number n. The method specified by a particular & need
not be the most efficient one, and even if it is, it may be still quite complex.
Brouwer imagines possibilities stich as the following:

The algorithm in question may indicate the calculation of a maximal
order n1 at which will appear a finite method of calculation of a
further maximal order n, at which will appear a finite method of
calculation of a further maximal order ns at which will appear a
finite method of calculation of a further maximal order n,4 at which
the postulated node of intersection must have been passed.

‘Much higher degrees of complication are thinkable,’ he adds. As mentioned
earlier, there can be a huge gap between having a proof that there is a bar and
knowing exactly what the bar looks like.

We saw that in the setting in which Brouwer proves the bar theorem we have
a spread M and a function or algorithm that assigns to every choice sequence
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in M a natural number 3. Because of the continuity principle, this implicitly
defines a thin bar p; in the underlying tree. A sufficient condition for a node
in M to have the property that any choice sequence passing through it will
be assigned the same number § is that this node, or an ascendant of it, was
obtained by the correlation law from a node in p;. But this is not a necessary
condition: perhaps one can find, once a sufficient number of such assignments of
numbers B to choice sequences have been determined, a node above the bar (i.e.,
in o) such that its correlated node in M also has that property. The situation,
when it occurs, is accounted for by the fact that the algorithm used to calculate
B may not be clever enough to extract this number from shorter segments [21,
pp.459-460]. (Under certain conditions, it is in fact necessary to put off the
assignment until later [95, p.71].)

Of course, whether a given thin bar could have been placed higher up in the
tree if we had a different algorithm does not influence the fact that any admis-
sible sequence that passes through a node a(n) in the given thin bar is secured.
In the presence of a proof h, an element of ¢ is therefore called ‘securable’. (An
element of o cannot be inhibited altogether, for then the element would already
have been in 7.) To say that there is a bar in a tree and to say that the root of
that tree is securable are equivalent.

The essential statement Brouwer wants to prove is in paragraph 4 of §2: ‘We
now assert that every element Fi,, ., of o possesses the well-ordering property.’
(Brouwer uses the notation Fyp,. . for the element (s,n1,...,n,) of 0.)

What Brouwer means by this is, essentially, that the thin bar of the subtree
dominated by Fsn, .. n., that is, the thin bar that bars exactly those sequences
that share the initial segment Fgp, . ., admits of a well-ordered construction.
Once this claim has been proved, it can then be instantiated for the subtree
dominated by the root node, which is just the whole tree, barred by the whole
thin bar.

Let us now take a look at Brouwer’s own, precise definition of the well-
ordering property of Fip, .. .n,, in which also the spread M is taken into account.
Consider the following two species. (See figure 4.1.)

e The subspread (after all, a species defined on a spread) Msy,..n, of M
determined by Fip,. n.. This subspread consists of all the infinite elements
of M that share the initial segment obtained by successively applying the
correlation law to the initial segments of Fi,, .. (ie., first to Fs, then
Fyp,, then Fy,,p,, and so on).

e The species of subspreads M,, where o is an extension of sn; ...n, such
that F, hits the thin bar but does not go beyond it. In other words, an
M, is a subspread of M determined by an F,, where F, is a descendant
of Fisp,..n, and is an element of u;. A species of such F, defines a little
thin bar, namely, that part of the whole thin bar which is responsible for
barring the sequences with initial segment Fgn,. n,.

Clearly, the union of all M,, (the union of all the elements of the second species)
is identical to Msp, ., (the first species). In Brouwer’s terms, the first species
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Figure 4.1: Little thin bar determined by Fsp,. n.

splits into the second species.

Now Brouwer defines the claim that F,, . .. has the well-ordering property
as the claim that the second species, the species of subspreads M,, is similar to
the species of full elements of a well-ordered species Tsp,..n, (as we will see, the
construction of this species T' brings with it that T will contain null elements as
well). It is claimed, that is, that we can construct a one-one relation between
these two species that leaves the ordering relations invariant. In effect this
means that the species of subspreads M, can be well-ordered: first construct
Tsn,...n, and then use the one-one relation. As to each M, corresponds Fy, this
also yields a well-ordering of the F,,.

As mentioned, the aim is to show that the root of the whole tree has the
well-ordering property. In that case, the corresponding F, together make up
the whole thin bar, because now « is any path reaching the thin bar from the
root. Moreover, we can then think of T as a well-ordered construction of the
whole thin bar.

Incidentally, Brouwer does not have the empty node as the root of the whole
tree; instead, he proves the result for trees with arbitrary non-empty top, and
the bars of all these trees taken together form the whole thin bar p;. But it
is convenient to add all these trees together (in a generating operation of the
second kind) with the empty node as top. As a matter of notation, F then is
not, as in Brouwer, the one-number sequence (s), but the empty sequence (),
and we will take Fy,, ., to refer to the element (ny,...,n,) of o.

If you think things through intuitionistically, Brouwer claims in footnote 7
of the 1927 paper, then you can actually see that the root has the well-ordering
property, and no further proof is needed:
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When carefully considered from the intuitionistic point of view, this
securability is seen to be nothing but the property defined by the
stipulation that it shall hold for every element of x; and for ev-
ery inhibited element of u, and that it shall hold for an arbitrary
Fsn,...n, @s soon as it is satisfied, for every v, for Fen,..n.vo. This
remark immediately implies the well-ordering property for an arbi-
trary anl,.‘n,«-

The well-ordering property follows immediately, as the stipulations defin-
ing securability translate immediately to the induction clauses for one-element
species and the second generating operation.

It has been questioned whether Brouwer’s full proof of the bar theorem really
is more evident than the principle formulated in this footnote; I will come back
to that issue in the comments on Brouwer’s proof below. But what can be said
now is that the full proof certainly is more fundamental in the sense that it
shows a finer-grained constructivism, turning, as we will see, on the issue what
exactly a mental proof is.3® This must be why Brouwer continues the footnote
by saying

The proof carried out in the text for the latter property, however,
seems to me to be of interest nevertheless on account of the propo-
sitions contained in its elaboration.

In chapter 2 it was explained that proofs can always be thought of as consist-
ing of just immediate facts and elementary inferences; proofs have a canonical
form. We now see that these canonical forms are well-ordered trees. The im-
mediate facts correspond to null elements as they are considered to be O-step
inferences. Elementary inferences correspond to generating operations of the
first kind if they have a finite number of premises, and to operations of the
second kind if they have infinitely many premises. A canonical form makes fully
explicit the intentional structure of a proof. «abeasioanl 2

Brouwer’s intentional analysis of proofs of securability led him to the follow-
ing conclusions. Any proof of a node’s securability must turn on the relations
between the various elements of the underlying tree, and these relations can be
decomposed into basic relations that relate an element Fm,...m, to its immedi-
ate ascendant and to one or more of its immediate descendants Bt corighigiis
In a proof in which only these basic relations play a role, these relations are
established by elementary inferences. According to Brouwer, these are:

1. Immediate facts or O-step inferences which show the securability of a se-
cured element. Brouwer didn’t give these a name. If an element is secured
because it is in the bar, Kleene called the 0-step proof of this an n-inference
(pronounced ‘eta-inference’); Dummett follows this. The other possibil-
ity, that the element is secured because it is inhibited, does not occur in
Kleene’s proof because he proves the bar theorem for just the universal
spread (which means no loss of generality, as any spread can be embedded
in it).
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2. (-inferences (pronounced ‘zeta-inferences’). From the securability of
Frum,...my_,> conclude the securability of Frm,..m,- (Rationale: if all
paths through a node hit the bar, then surely a path through one of that
node’s immediate descendants hits the bar.)

3. [ -inferences.?! From the securability of Fium,..m ,v for all v, conclude the
securability of Frnm,...m,- (Rationale: if all paths through any of a node’s
immediate descendants hit the bar, then all paths through that node hit
the bar.) This inference has infinitely many premises. It therefore depends
on the existence of a construction method for the species of its premises.

Canonical proofs are built out of these elementary inferences; and the way
they are combined makes such a proof a well-ordered species. The O-step-
inferences are the primitive species; (-inferences correspond to the generating
operation of the first kind; and F-inferences to that of the second kind. That
these proofs have a well-ordered structure is at the basis of Brouwer’s proof of
the bar theorem.

A canonical proof for the securability of the element Fy,, . . is indicated
by, for example, ksn,...n,..

Canonical proofs need not be as efficient as possible. They may contain
detours and redundancies by proving securability of a given node more than
once. We will see that this does not influence the proof of the bar theorem in
any essential way.

4.2.2 Part 2

The idea behind the second part is that we first construct proofs of the bar
theorem for little bars near the bottom of the tree, and then show that if such
proofs for small bars are combined, we obtain a proof of the bar theorem for a
larger subtree. Joining ever larger subtrees in this way finally brings one back
to the top of the whole tree, yielding a proof of the bar theorem. Thus, the
proof is by induction on proofs for subtrees; but it differs from more common
forms of induction in two ways.

First, it is induction in the reverse direction from the usual: it proceeds from
the bottom of the tree to the top (‘backward’, [95, p.65]).

Second, this induction is transfinite because, as we will see, the number of
premises in the induction step (corresponding to the number of subtrees involved
in the step upwards in the tree) is infinite.

The data available to us to carry out the proof that each element of o has
the well-ordering property are p;, the inhibited sequences, and the canonical
proofs.

In order to be able to make use of the canonical proofs, Brouwer defines two
properties on them, based on the following circumstances.

e A canonical proof ke, n, is a well-ordered species; it is built up induc-
tively from subspecies which are themselves proofs. These are called the
constructive underspecies of the species, and they include as special case
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the species itself. Each of these constructive underspecies is a proof ascer-
taining the securability of a particular element.

e Because of the first circumstance, one can construct from ksn, . ., the
well-ordered species fsp,..n,. of the elements of o whose securability is
established in the course of it. This species in particular contains Fyp, . n,
itself.

The two properties are:

the well-ordering property From the already defined well-ordering property
for elements, one for canonical proofs is derived. A constructional under-
species u of kg, .., (that is, one of the subproofs out of which kspn, . n,. is
built) has the well-ordering property for canonical proofs if every element
o of f, (that is, every element of which the securability is established in
the course of u) has the well-ordering property for elements.

the preservation property?3? A constructional underspecies u of ksny..n, has
the preservation property if the following holds: if every element of fg,, .
of which the securability functions as a premise in u has the well-ordering
property, then every element of fs,,. n, of which the securability is derived
in the course of u also has the well-ordering property. It is the preservation
property that guarantees that, if we join proofs of the bar theorem for little
bars, we get a proof of the bar theorem for the bar that combines these
little bars.

In Brouwer’s text, the whole proof that every element F,, . . of o has the
well-ordering property passes by in one short paragraph. It consists of three
steps:

1. The preservation property holds for ksp, .. n,
2. Therefore, the well-ordering property (for proofs) holds for kgn,.. ..

3. Therefore, the well-ordering property (for elements) holds for Fsn,...n,

One sees from this proof that the well-ordering property of a node rides
pickaback on the preservation property of canonical proofs of its securability.
That a node has a certain property is derived here from a property of certain
proofs; this move is typical for intuitionism. Let’s go through these three steps
now.
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1. The preservation property holds for ks, ., By induction along the con-
struction of ks, .. n, (which, after all, is a well-ordered species):

induction basis

The primitive species in a canonical proof are the 0-step-inferences,
proving the securability of a secured element. These are 0-step proofs
and have 0 premises. So, vacuously, a 0-step-inference preserves the
well-ordering property.

induction step

(a) F-inference
As this elementary inference has infinitely many premises, this is
where we will use transfinite induction. The premises are canonical
proofs of the securability of nodes Frumy...mgv, for all v. What we
have to prove is that, if each of these nodes has the well-ordering
property, so has the the node of which the F-inference in question
proves the securability, Frm,...m .5 this node is the top of the subtree
in which the subtrees dominated by the nodes in the premise are
combined. Assume that the nodes Fiam,...mg4w have the well-ordering
property for every v. Then to each corresponds a well-ordered species
of nodes Tmmy...mgv forming a little thin bar. These species are all
disjoint, as the initial segments (m, mg, . .. mgv) of the nodes in differ-
ent species will differ in their value for v. But then they can be added
in a generating operation of the second kind, giving the well-ordered
species Trnm,..m > Which shows that Frpm, . m , has the well-ordering
property.
(b) (-inference

Its premise is a canonical proof of the securability of Fromy..mg_y-
Assume that mel_,,mg_1 has the well-ordering property. Then to
this node corresponds a well-ordered species of nodes T, . .m i
forming a little thin bar. But a decidable subspecies of this one
Is that of all elements having initial segment Frumy...my; then this
subspecies is Tmml,,_mg, establishing that mel-~-mg has the well-
ordering property.

We see that a canonical proof ksn, .. n,. always has the preservation prop-
erty.

2. Therefore, the well-ordering property holds for Ksni..n,

That Ksp, . ., has the preservation property implies that it has the well-
ordering property, as follows. Esny...n, 8s a whole has as given only the
securability of the elements in x; and the inhibited sequences. In other
words, the well-ordered construction of Ksn,...n, has to start from proofs
that are null elements, corresponding to the fact that secured elements
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(elements of 7, i.e., in the bar or inhibited) are trivially securable (0-step
proof). These are its primitive species. A canonical proof determines
a species of elements, namely the species of those elements of which it
establishes their securability. In the case of a null proof, this species
has exactly one element, and is therefore well-ordered by definition. By
preservation, Ksp,. n,, built up starting from these primitive species, has
the well-ordering property.

3. Therefore, the well-ordering property holds for Fi,, . .

The fact that the well-ordering property (for proofs) holds for ksn,  .n.
means that, in particular, the element of o of which this proof as a whole
establishes the securability, Fi,, .., has the well-ordering property (for
elements).

This enables us to conclude that the well-ordering property holds for the
root of the tree, (): Fin,..n, was arbitrarily chosen from the nodes in o, so
we are allowed to infer that every element of o has the well-ordering property.
Instantiating that conclusion for the root of the tree, we conclude that the thin
bar of the subtree with the root as top, that is, the thin bar of the whole tree,
admits of a well-ordered construction. This proves the bar theorem.

We will now have a closer look at how this proof specifies the construction,
for an arbitrary element Fy,, .. of o, of Loy i

The species T' is constructed using generating operations of the second kind.
This operation corresponds, as Brouwer puts it in the fourth paragraph of §2, ‘to
the inversion of the continuation, by a new free choice, of a certain finite initial
segment of choices that is uninhibited for M’. By this he refers to the fact that
we are building in the opposite direction from the usual, so that now species
corresponding to descendants are constructed before the species corresponding
to their immediate ascendant. The well-ordered species Tsny...n.v to be added
in the infinite sum with Ts,, .. as top are now determined as follows:

e If Fsn,. ., is inadmissible, we take a primitive species consisting of v as
a null element.

® If Fyn,..n,v is admissible and moreover is an element of u;, we take a
primitive species consisting of v as a full element.

e In the remaining case, where Fy,, .., is admissible but is not an element
of pi1, that is, is unsecured, we appeal to our backward induction hypoth-
esis, by which we already have a well-ordering T, ...n.v Of the little bar of
the subtree dominated by Fsn,...npw; this Tep, ., will be the summand.

One sees how the construction of the well-ordering depends on the fact that
w1 is a decidable species, which in turn was guaranteed by the decidability of
the bar.

The primitive species of Ts,, ., that have been predicated full correspond
to the subspreads of M determined by the F,.
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The primitive species of Tsn,. n,. that have been predicated null do not
correspond to anything in M, as they correspond to inhibited sequences, to
which the correlation law does not apply. Brouwer (later) called elements that
are inhibited while their immediate ascendant is not, ‘stops’. The rationale
for including the stops in the construction of T' is that it guarantees that the
generating operation of the second kind employed will indeed have a well-ordered
species to add for every v.

Taken together, the full and null primitive species of Tsp, ., correspond
to the species 7 of secured elements, except that 7 also includes extensions of
inhibited sequences.

The well-ordering of the thin bar can be further described as follows. Con-
sider any two elements of the thin bar a = (ao,...,a,) and b = (by,...,by).
Because the bar is thin, neither element is a descendant of the other; so even
when m # n, one can indicate the position at which they first differ, say a; # b;.
Then T is constructed such that, if a; < b; then a < b, and, conversely, if b; < a;
then b < a. So (2,3,4) comes after (2, 1), and before (5) (assuming that these
sequences are all in a given thin bar). Thus, T is a lexicographical ordering.

4.3 Some comments on Brouwer’s proof

1. Each of the well-orderings Tsy, . ., is constructed strictly upwards; hence,
to arrive at them, one never first needs a well-ordering corresponding to a node
above Fypn,. .. As a node’s having the well-ordering property implies that it
is securable, this suggests that it cannot be essential first to have a canonical
proof of the securability of a node higher up in the tree. But this is exactly the
direction of argument in a (-inference; so (-inferences seem redundant. If one
proves this independently, this fact can be exploited to prove the bar theorem
in a slightly different way. This was done by Brouwer in the 1924 version, which
proceeds, in effect, by removing all the (-inferences from the canonical proofs
(this is done explicitly in an elucidatory companion paper of the same year [18],
unfortunately not included in [104], and in the 1954 proof (but see remark 3
below)). The inductive definition of the elements in the thin bar then is a copy
of the inductive definition of the resulting canonical proof.

2. While eliminating the (-inferences simplifies the proof, the 1927 proof
shows that it is not essential to do so, and it is therefore not this eliminability
that is the main idea behind the bar theorem. Indeed, in the course of a canon-
ical proof, the securability of a certain Fg,,.. . may be established more than
once, and if it is, there are equally many different proofs of the well-ordering
property of that element; but it doesn’t matter if there are redundant inferences,
in two senses.

It doesn’t matter in the sense that in our effort to construct a well-ordering
Tsn,...n,., for each v we need only one well-ordering T, .. n,,; Whether this is
obtained from the first proof of the securability of Fi,, .n,., or from a later
one, is immaterial. Any one will do.
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But as Brouwer mentions in footnote 9 of the 1927 paper, it also doesn’t
matter in the stronger sense that the well-orderings obtained on the basis of
different canonical proofs in fact all come out the same; his term is that they
are all ‘generation-equivalent’. This is defined as follows [22, pp.452-453):

e Two well-ordered primitive species F’ and F" are generation-equivalent if
they consist of the same element and moreover this element is either full
for both or null for both.

e Two well-ordered non-primitive species F’ and F" are generation-
equivalent if for arbitrary v the constructional underspecies F, and F}/
either both fail to exist, or both exist and are generation-equivalent.
[translation taken from [67, p.461]]

(Note that because our species T is generated in the second generating oper-
ation, the constructional underspecies T, exists for every v.) What it means
for two well-orderings to be generation-equivalent is that although they are
different intensionally, as they are defined on the basis of different canonical
proofs, they are all built up in exactly the same way. If you would draw them
on paper, their pictures would look the same. This is shown by the following
induction hinted at by Brouwer.

induction basis

Let Tsknl...n,. be a primitive species, corresponding to the canonical proof

ksn,y...n,. of the securability of Fep, . n,.

Assume that there is a different canonical proof of the securability of
Fsn,...npy Msny..m,., and let Tg7 . be the primitive species corresponding
to that.

Now the two species Tsknl...n, and T ., are generation-equivalent, be-
cause in both cases, the element F,, . . is the same, and only that deter-
mines whether the unique element of T%, yom, and T will be a full
or a null element.

induction step

Let Tsknl.‘.nr be a species, built up by adding, in the second generating
operation, the species T¥, . . The species T¥ . corresponds to the

canonical proof kgp, .. n, of the securability of Fin,. n,.

Assume that there is a different canonical proof of that, mgp, .. .n,, yielding
the species T, This species is built up by adding, in the second

SNy...np"
generating operation, the species Tg, ., .-

By induction hypothesis, for every v, Tf, ., and T ., are
generation-equivalent: they correspond to different canonical proofs of
the securability of the same element Fin,. n.u.
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But then, by the definition of generation-equivalence, T_fnl and

seiby
Tg, . n, are generation-equivalent.

3. That the bar has to be decidable for the bar theorem to be true was
brought to light by Kleene [95, pp.87-88]. Van Dalen gives the following simpli-
fied version [37, p.102]. Consider the universal spread and a decidable predicate
A(z) for which as yet we have neither a proof of VzA(z) nor of =VzA(z). Now
define the species B as follows:

() € B& —VrA(z)
(n) € B< A(n)

It will be immaterial what other elements B might contain. Every path «
through () hits B, so B is a bar. This is seen as follows. For any particular
a(0)—the first value on the path a—we can always find out whether A holds of
it or not, for it was given that A(z) is decidable. If it holds, then (a(0)) € B; if
it doesn’t, then we have a counterexample to VzA(z), therefore =VzA(z), and
() € B.

B is, at present, not a decidable bar. For if it were, then, in particular,
() € BV () ¢ B. Combining this with the intuitionistically valid ~—VzA(z) —
Vz--A(r) and with Vz-—A(z) — VzA(z), valid because A is decidable, we
obtain —VzA(z) V VzA(z); but this contradicts our hypothesis that we do not
yet have a proof of the latter.

Now assume that the bar theorem holds for this B, so that it contains a well-
ordered thin bar B’; being a well-ordered species, B’ is decidable. It follows that,
in particular, () € B’V () ¢ B’. But then we get, by the same reasoning as
above, -VzA(z)VVzA(z), contradiction. Thus, we have a weak counterexample
to the bar theorem for bars that are not decidable: it is not shown that it is
false, but it is shown that it cannot be true as long as there are such predicates
A satifying the conditions mentioned.

I mentioned that the decidability of the bar is implicit in the premises of the
1924 and 1927 proofs of the bar theorem (because of the continuity principle),
but it is neither explicit nor implicit in the proof from 1954. The countexample
shows, therefore, that the latter proof must be incorrect. For further discussion,
see [107] and [49, 3.4].

4. Various authors—Heyting, Kleene, Troelstra, Dummett—agree with
Brouwer’s remark on securability in his footnote 7, quoted on p.50 above. They
choose to adopt that in the form of the axiom schema BIp for bars in the
universal spread (one axiom for each specific bar). It has the form of an impli-
cation, where the antecedent consists of a conjunction of four conditions. For
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clarity, I will write each conjunct on a new line:

BIp Va3z(az € B)A (4.1)
Vn(n € BVn ¢ B)A (4.2)
Vn(n€ B —ne Q)A (4.3)
Vn(Vy(nxy € Q) - neQ) — (4.4)
e (4.5)

(4.1) expresses that B is a bar (not necessarily thin). (4.2) adds to this that B is
decidable—hence the ‘D’ in BIp. Let @ be the species of securable sequences;
then (4.3) specfies that whenever an element is in the bar, it is securable. In
(4.4), n*y means the element n extended by one choice y. For example, (1,2, 3)*
4 is (1,2,3,4). (4.4) translates Brouwer’s stipulation that securability is the
property that, whenever it holds for all immediate descendants of an element,
holds for that element itself. The conclusion drawn from (4.1)-(4.4) is that the
root of the tree is securable (4.5).

As explained after the quote from Brouwer’s footnote on p.51, BIp immedi-
ately implies the well-ordering property for any Fi,, . in o, and in particular
for the root (); so if one finds BIp evident, one can leave aside the long argu-
ment based on analysis of proofs into canonical proofs. Of particular interest
is Kleene’s proof that BIp is independent of the other intuitionistic principles
as he formalized them [95, p.113]. This means that if one wishes to prove the
validity of the schema, one has to adopt a new principle in its place to prove it
from; and Kleene remarks, ‘We are unconvinced that any known substitute is
more fundamental and intuitive’ [95, p.51]. But as we have seen, the substitute
of the analysis in terms of canonical proofs is more fundamental in the sense
that it makes the role of intentionality in proofs explicit. Perhaps one should
consider the long proof first of all an explication of the principle in the footnote
[75, p.45]. Indeed, it has been shown by Martino and Giaretta that Brouwer’s
claim that any proof of the existence of a bar can be analysed into his three
elementary inferences is, if one accepts the continuity principle, equivalent to
BIp [107].33 Brouwer sometimes wondered if the basic relations on which the
elementary inferences are based couldn’t be reduced to even more basic relations
[34, p.13]. This is still an open question (see p.65).

4.4 The fan theorem

From the bar theorem, Brouwer proved the fan theorem. In turn, the fan theo-
rem is used to prove that all total functions on the continuum (intuitionistically
conceived) are continuous, and uniformly continuous at that. The importance
of this result was explained at the beginning of this chapter.

Recall that a spread M is a finitary tree or fan if each node in it has only
finitely many immediate descendants. (According to the definition of a spread,
it always has at least one.) Intuitionistically, ‘each node has only finitely many
descendants’ means ‘for each node (in the underlying tree) we can determine a
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number k such that no choice greater than k is admissible at that node’. If we
cannot do this, then we don’t know that M is a fan. Brouwer states the fan
theorem as follows:

.If with each element e of a finitary spread M a natural number 3,
is associated, a natural number z can be specified such that 3. is
completely determined by the first z choices generating e. [21, p.462)

The point is that, while 8. in general will depend on finite elements in the
underlying tree and the correlation law, it does not depend on any infinite
choice sequence.

One can prove that the unit continuum, i.e. the closed interval [0,1], can be
represented by a fan, for example the fan J we saw earlier, p.43.2* (To do this
one has to show that every element of the fan falls within that interval and that,
conversely, every element of that interval coincides with an element of the fanj
An open interval cannot be represented by a fan as in such an interval there is
no.leftmost element and no rightmost element.) From this, Brouwer proved the
uniform continuity theorem: a total function from the closed interval [0, 1] to R
is uniformly continuous on [0, 1], that is, in a standard formulation,

VeIV Voo (|2, — 22| < 6 — | f(z1) — f($2)| <e)

for positive 4, € and z1,z5 € [0, 1].

An immedia‘?e consequence (a matter of manipulating the quantifiers in
front) of the uniform continuity theorem is the continuity theorem, which is
not §tated by Brouwer: a total function from the closed interval [0, 1] to R is
continuous on [0, 1], that is, again in a standard formulation,

VeVa130Vza(|oy — 22| < 8 — |f(21) — f(z2)] <€)

for positive 4, ¢ and z1,z, € [0, 1]

One can see from the order of the quantifiers why the uniform continuity
theorem is a stronger result than the continuity theorem: for a given e, uniform
continuity demands that the same § work for all z; simultaneously, whereas
for. ordinary continuity, § may vary with each x;. It is therefore plausible that
uniform continuity should require knowledge of the structure of the bar whereas
ordinary continuity does not.?® The uniform continuity theorem is a much more
powerful weapon than the continuity theorem; this will have added to Brouwer’s
pride in having established it.

An important consequence of the continuity theorem®® is the unsplittability
of the unit continuum: suppose [0,1] = AUB and AN B = {, then f defined by

_J o ifzeA
f(m)_{l ifzeB

is total and therefore, by the continuity theorem, continuous. But then f must
be constant, so either [0,1] = A or [0,1] = B.
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These results for the unit continuum—continuity, uniform continuity, and
unsplittability—generalize to the whole continuum. A remarkable consequence
is that it is false that every real number is either rational or irrational. For if
it were, we could obtain a splitting of the continuum by assigning 0 to rational,
and 1 to irrational real numbers.3” This is a strong counterexample to one form
of the principle of excluded middle:

-VzeR(z€QVzEQ)

Note that this does not mean that it is contradictory to hold of any particu-
lar real number c that it is rational or irrational; but it does mean that it is
contradictory to hold it for all real numbers simultaneously.

The fan theorem, from which Brouwer derived these results, holds for the
special kind of spread that fans are, but not for spreads in general. Here is a
counterexample. Consider the universal spread and define a function f on it by
f(@) = a(a(0)), that is, f assigns to o the value of its a(0)-th element. As «
is an element of the universal spread, this means that any arbitrary choice for
(0) is admitted. But then there can be no upper bound on «(0), and hence
not on the length of the segment of any o that one has to know before one can
determine f(c). In this case there is no z as claimed by the fan theorem.

Before looking at how the fan theorem follows from the bar theorem, let
us first, as we did above for the bar theorem, see why a certain simple-minded
approach doesn’t work (compare [52], the general tenet of which however I do
not accept). Start at the root of the underlying tree and try all admissible paths
of length 1. This can be done as in a fan we know that there are only finitely
many. Put all paths that just hit the bar aside; of the remaining ones, now try
their admissible immediate extensions. In other words, try all admissible paths
of length 2 such that their predecessor hasn’t hit the bar already. Of these there
are likewise only finitely many. Put all paths that just hit the bar aside, etc.
Keep repeating the process; as every infinite path will at some point hit the bar,
the process will end. The length at which all paths of that length are put aside
is the maximum length a path can have in this fan when it hits the bar. This
is the z we were looking for.

However, this reasoning is circular. To know that the process will end means,
intuitionistically, that we can determine an upper bound on the length of paths
to the thin bar. But that we can is precisely what we are trying to prove.

This is where the bar theorem comes in. As the fan is barred by a decidable
bar, the bar theorem applies, and yields a well-ordered thin bar. That well-
ordering is constructed using generating operations of the second kind. This
operation adds together infinitely many well-ordered species Tsp, ..., that are
determined by the rules we saw on p.55. In particular, Tsp, . .n.v will be a null
element exactly if choosing v does not yield an admissible extension of Fany..ovp

Now, given that M is a fan, we know that there are always only finitely many
admissible extensions. That is, for each F,,, . we can indicate a number k
such that for-all v > k, Fspn,..n,, is inadmissible. But then for all v > k,
Tsn,...n. Will be a null element. If we go through the Tsp,..n,v, starting at
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Tsny...ne0, then all the elements among them that are not null will have been
reached, at the latest, by the time we have arrived at Tsny..n.k- Let these
elements form the content of a species Qgn, ... It can be constructed as a well-
ordered species in parallel with Ts,, .. ., this time using a generating operation
of the first kind. When Tsy,. n.o to Tsn,y...n,k have been determined, run through
them to determine the summands whose sum will be Q sny..n., as follows:

o If Tyn, . .n,v is a primitive species consisting of » as a null element, and
therefore corresponds to an inadmissible element and determines no ele-
ment of M, we skip it.

® If Tsny. n,v is a primitive species consisting of v as a full element, we put

a primitive species Qsp,...n,, consisting of v as a full element next in the
list of summands.

e In the remaining case, where Tip, ., is not a primitive species, we appeal
to our backward induction hypothesis, by which we already have a well-
ordered species Qsn,...n,,; We put this species next in the list of summands.

Adding the summands on the finite list in a generating operation of the first
kind, we obtain Qsp,. ... It has only full elements ‘and no null ones. We
constructed it using only generating operations of the first kind, so the species
of its elements must be finite, as is shown by an easy induction. Because of the
way it is constructed, Qgsn,...n, determines a well-ordering of the species of full
elements of Ty, . n,, which therefore is also finite.

In particular, the species of full elements of Ty—the species, that is, of all
nodes in the thin bar p;—is well-ordered and finite. In that case, a natural
number 2 can be indicated such that the maximum length of a path from the
root to the bar is z: just run through the finite well-ordering of full elements
of Tiy and keep track of the deepest node found so far. As it takes at most
z choices to hit the bar from the root, the natural number 3, assigned to an
element e of M is completely determined by the first z choices generating e.
This proves the fan theorem.

From a classical point of view, one proves the same much quicker, from

Konig’s lemmas:38 .

If a fan contains infinitely many nodes, it contains an infinite path
Taking the contraposition gives

If a fan contains only finite paths, it contains finitely many nodes
(and hence there is an upper bound on the length of the paths)

Note that a spread that has only finite paths can still contain infinitely many
nodes: not in depth, but in width. But such a spread is not a fan. As a bar in
a fan cuts off all infinite paths at some point, it determines a fan having only
finite paths, and if we then apply the contraposition of Kénig’s lemma, to that,
we obtain a classical version of the fan theorem.
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But this version does not have the same strong content as the intuitionistic
one, for the latter provides us with a construction of an upper bound. The clas-
sical version merely says that there is such a bound, without further informing
us what this bound is. This is why the move of contraposing Konig’s lemma is
not intuitionistically valid: it introduces an existential statement without sup-
plying a construction to find a number that is a witness to it. But then we have,
on the intuitionistic interpretation of logic, no right to hold that statement Frue.

It might be instructive to see why the classical proof of Kénig’s lefmma itself
is not intuitionistically valid; the reason why also shows that there is little reason
to suppose that Konig’s lemma is intuitionistically true at all. . .

The proof has a certain constructive flavour, as it defines an infinite path
o through the fan inductively [134, p.8]. We let the path start at the root,
which has, by hypothesis, infinitely many descendants, and set (0) = (). This
is the induction basis. The induction step is based on the observation that, of
the finite number of immediate descendants that a node a(n) in the fan has,
at least one must have infinitely many descendants. For if none had, then the
fan couldn’t contain infinitely many nodes, as it does, by the hypothesis of the
theorem. Pick such an immediate descendant for a(n+1), the next node on the
infinite path o. By induction from the root down, then, we have defined a(n)
for all values of n, and this determines an infinite path, as was asked for.'

This proof, however, is not really constructive. It employs the prmc1p¥e of
the excluded middle in the form ‘Each immediate descendant either has finitely
many descendants, or it has infinitely many’. But it is not effectively d'ecidable
which is the case, and therefore it is not intuitionistically true. Obviously, a
trial-and-error search for an immediate descendant of a(n) that has infinitely
many descendants is out of the question; and neither do we have another general
method to determine one. In a specific fan of course the spread law may be such
that from inspecting it we can, at any given node, effectively pick out such an
immediate descendant as required; but there is no reason to suppose that this
is the case for every fan.

Konig’s lemma was proved in 1926, two years after Brouwer’s ﬁrsf; proof of
the fan theorem. Historically, the two results seem to be unrelated. It is of some
interest that here we have a theorem of which the intuitionistic proof preceded
the classical one.
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