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CHAPTER 1

Introduction

The differential and integral calculus is based upon two
concepts of outstanding importance, apart from the concept of
number, namely, the concept of function and the concept of
limit. These concepts can, it is true, be recognized here and
there even in the mathematics of the ancients, but it is only
in modern mathematics that their essential character and signi-
ficance are fully brought out. In this introductory chapter
we shall attempt to explain these concepts as simply and
clearly as possible.

1. Tae ConTiNUUM OF NUMBERS

The question as to the real nature of numbers is one which
concerns philosophers more than mathematicians, and philo-
sophers have been much occupied with it. But mathematics
must be carefully kept free from conflicting philosophical
opinions; preliminary study of the essential nature of the con-
cept of number from the point of view of the theory of know-
ledge is fortunately not required by the student of mathematics.
We shall therefore take the numbers, and in the first place the
natural numbers 1, 2, 3, . . ., as given, and we shall likewise
take as given the rules * by which we calculate with these
numbers; and we shall only briefly recall the way in which the
concept of the positive integers (the natural numbers) has had
to be extended.

# Thege rules are as follows: (@ + b) + ¢ = a + (b + ¢). That is, if to the
sum of two numbers @ and b we add & third number ¢, we obtain the same
result as when we add to @ the sum of b and ¢. (This is called the associative
law of addition.) Secondly, @ + & = b + @ (the commutative law of addition).
Thirdly, (ab)e = a(bc) (the associative law of multiplication). Fourthly, ab = ba
(the commutative law of multiplication). Fifthly, a(b + ¢) = ab + ac (the
distributive law of multiplication).

b
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1. The System of Rational Numbers and the Need for its
Extension.

In the domain of the natural numbers the fundamental
operations of addition and multiplication can always be per
formed without restriction; that is, the sum and the product of
two natural numbers are themselves always natural numbers.
But the inverses of these operations, subtraction and division,
cannot invariably be performed within the domain of natural
numbers; and because of this mathematicians were long ago
obliged to invent the number 0, the negative integers, and
positive and negative fractions. The totality of all these numbers
is usually called the class of rational numbers, since they are all
obtained from unity by using the “ rational operations of calcu-

lation ”’, addition, multiplication,
e =7 — gubtraction and division.
Fig t—The nusber nxis Numbers are usually represented
graphically by means of ‘the points
of a straight line, the “number axis”, by taking an arbitrary
point of the line as the origin or zero point and another
arbitrary point as the point 1; the distance between these two
points (the length of the wnit interval) then serves as a scale by
which we can assign a point on the line to every rational number,
positive or negative. It is customary to mark off the positive
numbers to the right and the negative numbers to the left
of the origin (cf. fig. 1). If, as usual, we define the absolute
value (also called the numerical value or modulus) |a| of
a number a to be a itself when* a =0, and to be —a when
a < 0, then | a | simply denotes the distance of the corresponding
point on the number axis from the origin.

The geometrical representation of the rational numbers by
points on the number axis suggests an important property which
is usually stated as follows: the set of rational numbers 1s every-
where dense. This means that in every interval of the number
axis, no matter how small, there are always rational numbers;
geometrically, in the segment of the number axis between any
two rational points, no matter how close together, there are points
corresponding to rational numbers. This density of the rational

* By the sign = we mean that either the sign > or the sign = shall hold.
{x t:orresponding statement holds for the signs + and F which will be used
ater.
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numbers at once becomes clear if we start from the fact that the

1 1 1
numbers =, —, == .+, =
2 22 2 2"
approach nearer and nearer to zero as n increases. If we now
divide the number axis into equal parts of length 1/2", beginning

1 2 3

represent rational numbers of the form m/2%; here we still have
the number » at our disposal. If now we are given a fixed
mterval of the number axis, no matter how small, we need only
choose 7 so large that 1/2 is less than the length of the interval;
the intervals of the above subdivision are then small enough for
us o be sure that at least one of the points of subdivision m/2"
lies in the interval.

Yet in spite of this property of density the rational numbers
are not sufficient to represent every point on the number axis.
Even the Greek mathematicians recognized that when a given
line segment of unit length is chosen there are intervals whose
lengths cannot be represented by rational numbers; these are
the so-called segments incommensurable with the unit. Thus, for
example, the hypotenuse of a right-angled isosceles triangle with
sides of unit length is not commensurable with the unit of length.
For, by the theorem of Pythagoras, the square of this length l
must be equal to 2. Therefore, if | were a rational number
and consequently equal to p/g, where p and g are integers
different from 0, we should have p% = 2¢2. We can assume that
p and ¢ have no common factors, for such common factors could
be cancelled out to begin with. Since, according to the above
equation, p? is an even number, p itself must be even, say
p= 2p'. Substituting this expression for p gives us 4p®= 242,
or ¢? = 2p'%; consequently ¢ is even, and so ¢ is also even.
Hence p and ¢ both have the factor 2. But this contradicts our
hypothesis that p and ¢ have no common factor. Thus the
assumption that the hypotenuse can be represented by a fraction
plq leads to contradiction and is therefore false.

The above reasoning, which is a characteristic example of
an “indirect proof ”’, shows that the symbol 4/2 cannot corre-
spond to any rational number. Thus we see that if we insist that
after choice of a unit interval every point of the number axis
shall have a number corresponding to it, we are forced to extend

, ... become steadily smaller and

at the origin, the end-points .. of these intervals
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the domain of rational pumbers by the introduction of new
« irrational ” numbers. This system of rational and irrational
pumbers, such that each point on the axis corresponds to just
one number and each number corresponds to just one point on
the axis, is called the system of real numbers.*

9. Real Numbers and Infinite Decimals.

Our requirement that t0 each point of the axis there shall
correspond one real number states nothing @ priori about the
possibility of calculating with these real numbers in the same
way as with rational numbers. We establish our right to do
this by showing that our requirement s equivalent %o the
following fact: the totality of all real numbers is represented
by the totality of oIl finite and infinite decimals.

We first recall the fact, familiar from clementary mathe-
matics, that every rational number can be represented by @
terminating or by a recurring decimal; and conversely, that every
guch decimal represents a rational number. We shall now show
that to every point of the number axis we can assign & uniquely
determined decimal (usually infinite), so that we can represent
the irrational points or irrational numbers by infinite decimals.
(In accordance with the above remark the irrational numbers
must be represented by infinite non-recurring decimals, for ex-
ample, 0-101101110... )

Suppose that the points which correspond to the integers
are marked on the number axis. By means of these points the
axis ig subdivided into intervals or segments of length 1. In
what follows, we shall say that & point of the line belongs to an
interval if it is an interior point or an end-point of the interval.
Now let P be an arbitrary point of the number axis. Then the
point belongs to one, or if it is a point of division o two, of
the above intervals. If we agree that in the second case the
right-hand one of the two intervals meeting ab P is to be chosen,
we have in all cases an interval with end-points g and g+ 1 to
which P belongs, where g is an integer. This interval we
gubdivide into ten equal sub-intervals by means of the points

corresponding to the numbers g + ili(-), g+ %}, Y %, and

# Thus named to distinguish it from the system of complex pumbers, obtained
by yet another extension.

R T E
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we number these sub-intervals 0, 1 9i
: , 1,..., 9 in the natural
from left to right. The sub-interval With? the number a tal;egrg::

the end-points 2 @ 1 i
P g+10 andg—{-ﬁ)—l—m. The point P must be

cor.lta,med m one of these sub-intervals. (If P is one of the new
go;nts of division it belongs to two consecutive intervals; as

efore, we ch.oose ’{;he one on the right.) Suppose that the inteirv 1
thus determined is associated with the number a,. The eng-

points of this interval then correspond to the numbers g - &
and % . L i i -
g+ % + T This sub-interval we again divide into ten

iqual. parts and determine that one to which P belongs; as be-
r?;}i}, if P belongs to two _sub—intervals we choose the on:z on the
ght. We thus obtain an interval with the end-points

a a

g 1 s ay , G 1 ,

d.—l—- 10 -+ o2 and g + 1 -+ T -+ 0 where a, is one of the
igits 0, 1, ..., 9. This sub-interval we again subdivide, and

continue to repeat the process. After n steps we arrive at a sub-

interval containing P, havin, 1 .
’ g length — and T
corresponding to the numbers 107 with end-points

a. a
TR R W W R o AL
R TORARRRRUS T g+ﬁ)+—z+"'+1%+1‘(lﬁ'

102
Here each o is one of the numbers 0, 1, ..., 9. Bub
@ o :
10+102+"’+1”6"71

?f sézlply the decimal fraction 0,0, ...a, The end-point
e interval, therefore, may also be written in thepfom?
1
. . 107
anv;r.z ;22513er.the above process repeated indefinitely, we obtain
o breek ecj@fmal. 0'0/1(1/'2 .. ., which has the following meaning
ak off this decimal at any place, say the n-th, the poini;

P w%ll lie in the interval of length
mating points) are

g+ 0aa,...a, and g+ 0a0,...0,+

1
i whose end-points (approxi-

9-+ Oaa,...a, and g+ 004a,...0a,+ 4
107
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In particular, the point corresponding to the rational number

: . 0,1,...,p— 1. Here again we find that the rational b
g+ 0,8y . - - G will lie arbitrarily near $o the point P if only 1onal numbers,

and only the rational numbers, have recurring or terminating

n is large enough; for this reasoy the points g+ O-aytly - - a'i expansions of this kind. For theoretical purposes it is often
are called approximating points. We say that the infinite 'decgna convenient to choose p = 2. We then obtain the binary expan-
g+ 0a,ay . - - is the real number corresponding 10 the point £ sion of the real numbers,

Here we would emphasize the fundamental assumption that , o,
we can caloulate in the usual way with the real numbers, a.nd : L 5%_*_ L
hence with the decimals. It i8 possible to prove t'hls using o)
only the properbies of the integers as @ starting-point. Butb T~

this is no light task; and rather than allow it to bar our pro-

For numerical calculations it is customar
. to express th
gress ab this early stage, We regard the fact that the ordinary v p 5

whole number g, which for simplicity we here take to be posi-

rules of caleulation apply to the real 'number's as an axiom, tive, in the devimal system, that is, in o here ¢
on which we shall base the whole differential and integral calculus. : i 1
We here insert & remark concerning the possg)ility, fm certain oas;s, (;’i apl0™ 4 041077 4+ .o A 0,10 + ag
i interval in fwo ways in the above scheme O expansion. TO . B
g?lgoilsfs:?:ct?gn it follows thab the points of division arising In our where each a, 18 01}6 Of' the digits 0, I - Then for
repeated process of subdivision, and such points only, can be.repres§nted g+ 0aa, ... wWe write simply
by finite decimals g + 0:@18; - - - %n: Let us suppose that such & pO{n't P _
first appears as & point of division at the n-th stage of the subdivision. _ OOy - -« Oy0g * Byl o -
Then according to the above process weé have chosen at the n-th stage the e N
interval to the right of P. In the following stages we must choose & sub- imilarly, the positive whole number g can be written in one and
interval of this interval. But such an interval must bave P as its left end- only one way in the form
point. Therefore in all further stages of the subdivision we m_ust ch.oose
the first sub-interval, which has the number 0. Thus the infinite decimal B A pk - Bk—1 pk"l & Bﬂ’? 4 )30,
corresponding to Pisg+0a@,. .- a, 000 . ... If, on ’ohe. qther hand,
we had at the n-th stage chosen the left-hand interval containing P, then where each of the numbers 8, is one o tthonumbers 0.1, . .., p—1.

in all later stages of subdivision we should have had to choose the sub-

interval farthest to the right, which has P as its right end-point. Such

& sub-interval has the aumber 9. Thus for P we should have obtained a

decimal expansion in which all the digits from the (n + 1)-th onward are 5 _ " "
nines. The double possibility of choice in our construetion therefore cc.)rre- Brp* + ﬁk—lp S ﬁlp + Bo+ 24+ 2...,

¢ sponds t0 the fact that for example the number % has the two decimal ) P p?

| expansions 0-25000 . . . and 0-24999 .. ..

This, Wiﬂl.our previous expression, gives the following result:
every positive real number can be represented in the form

where B, and b, are whole numbers between 0 and p — 1. Thus,

5 Expression of Numbers in Scales other than that of 10. for example, the binary expansion of the fraction %" is
Tn our representation of the real numbers We mad.e .the : 91 \ 0 1
number 10 play a special part, for each interval was gubdivided ' i 1x22+0X2+ 14 §+ o5

into ten equal parts. The only reason for this is the widespred

use of the decimal system. We could just as well have taken P * Bven for numerical calculations the decimal system is not the best. The

. . . . : sexaygesimal . : 5

equal sub-intervals, where p 18 an arbitrary integer great}if zdvantageathiyfi"é’i,iﬁ,;afﬁ,’gl;"ith whinl, iits B&*;yloni&ns calculated, has the
ham 1. i gion O the y ecimal ex X y large proportion o thq rational numbers whose
We should then have obtained an eXpres : pansions, pansions do not terminate possess terminating sexagesimal ex-

form g + %+ %E+ ..., where each b is one of the numbers

A





