CS 3110 Spring 2016
Problem Set 3
Version 1 (last modified March 5, 2017)

Overview

This assignment involves building the Real numbers in OCaml, which requires implementing
the natural and rational numbers. We represent these mathematical concepts with OCaml’s
module system. We will be using the definitions from Foundations of Constructive Analysis
by Errett Bishop namely chapter 2. While we aim to keep this writeup self-contained, it is
also a good idea to use this text to supplement your understanding of real numbers. This
assignment must be done individually.

Objectives
e Gain mathematical maturity and an intuitive understanding of the number system
e Write Ocaml code that makes extensive use of modules, functors, and signatures.
e Gain experience writing specifications

e Familiarize with propositions as types

Recommended reading

The following supplementary materials may be helpful in completing this assignment:

e Lectures 8 9 10 11 12
e The CS 3110 style guide
e Real World OCaml, Chapter 4,9,10

e Constructive Analysis, Chapter 2

What to turn in

Exercises marked [code] should be placed in naturals.ml, fields.ml, and will be graded
automatically. Exercises marked [written| should be placed in written.txt or written.pdf
and will be graded by hand.

http://www.cs.cornell.edu/courses/cs3110/2017sp/lectures/8/CS3110-2017sp-Lecture8.pdf
http://www.cs.cornell.edu/courses/cs3110/2017sp/lectures/9/CS3110-2017sp-Lecture9.pdf
http://www.cs.cornell.edu/courses/cs3110/2017sp/lectures/10/CS3110-2017sp-Lecture10.pdf
http://www.cs.cornell.edu/courses/cs3110/2017sp/lectures/11/CS3110-2017sp-Lecture11.pdf
http://www.cs.cornell.edu/courses/cs3110/2017sp/lectures/12/CS3110-2017sp-Lecture12.pdf
http://www.cs.cornell.edu/courses/cs3110/2016sp/handouts/style.html
https://realworldocaml.org/v1/en/html/index.html
http://nuprl.org/MathLibrary/ConstructiveAnalysis/

Compiling and testing your code

For this problem set we have provided a Makefile and minimal test cases.

e To compile your code, run make main
e To test your code, run make test
e To remove files from a previous build, run make clean

Please note that any submissions that do not compile will get an immediate 10% deduction
from their original grade.

Testing with utop
You are also provided with a .ocamlinit file, which will run when you open utop.

Once you have compiled your code, the #load commands will load in the modules/func-
tions/values from the compiled bytecode. This will be more useful than using the #use
command, which you are familiar with.

If you haven’t compiled, or you haven’t implemented certain parts of the .ml files,
you may get errors when opening utop. These are just the result of running the
.ocamlinit commands; you can ignore them.

Style with Modules

There are two ways to open Modules for a local scope. As an example, let’s consider opening
the module List.

e Using parentheses (useful for one liners)
ex) List.length (List.tl (List.map (fun x -> x) 1)) can be written as
List.(length (t1 (map (fun x -> x) 1)))

e Using a let statment (useful for a specific section)

let open List in ...

Some final notes

Once again, for loops and while loops are not allowed, nor are imperative features
such as refs or arrays

Unlike the previous assignments, you are not limited in using recursion or List module
functions (unless otherwise specified). You are free to use any previously defined function
in subsequent problems. You can freely make any functions rec or not rec; the same goes
for helper functions. You can also include “external” helper functions, if they are within a
struct (so no top-level external helper functions).

Warmup: Natural Numbers

The natural numbers, 0,1, 2, ..., can be structurally defined as follows:

i. 0 is a natural number, and

ii. if n is a natural number, S(n) is a natural number.

We represent the natural numbers by the signature, N, below. The signature contains a zero
value and succ function, as per the definition, and is extended with addition, multiplication,
equals, and less than operations.

module type N = sig
(x* [t] represents a natural number. *)
type t
(xx [zero] returns the [t] representing 0. *)
val zero : t
(x** [succ x] returns the successor to [x] *)
val succ : t -> t
(xx [eq a b] returns [a = b] x*)
val eq : t -> t -> bool
(xx [add a b] returns [a + Db]. *)
val add : t -> t -> ¢t
(** [mul a b] returns [a * b]. *)
val mul : t -> t -> ¢t
(xx [1t a b] returns [a < b] x*)
val 1t : t -> t -> bool
(x** [make x] returns [Some x] if x>=0, [None] otherwise.*)
val make : int -> t option
(x*x [to_int x] returns the integer representation of x
* 1t is undefined if x cannot be represented as an integer *
val to_int : t -> int
end

Exercise 1: Naturals with ints.

[code] Implement N using ints, in a module called IntNat, in naturals.ml.

Exercise 2: Naturals with big_ints.

[code] The ints in OCaml are 32-bit integers, which can overflow. We can instead use
Big Ints, provided by the Big_int module, which are arbitrary-precision integers. A list
of all its functions can be found here: http://caml.inria.fr/pub/docs/manual-ocaml/
libref/Big_int.html. Look over the Big_int module and get familiar with it, we will
be using this module extensively for this problem set. Then, implement N using the type
Big_int.big_int, in a module called BigIntNat, also in naturals.ml.

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Big_int.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Big_int.html

The Real Number System

The first proof of the existence of irrational numbers is often attributed to Pythagoras. It
is believed that he discovered them by studying pentagrams. However, It wasn’t until the
work of Georg Cantor in 1871 where a rigorous definition of the real numbers was first given.
Calculus itself developed without a rigorous definition of real numbers available. Since then,
multiple definitions of real numbers have been proposed. In this problem set, we will work
with the definitions provided by Errett Bishop.

Before discussing the construction of the real numbers it is important to understand the task
at hand and what the set of real numbers should contain. First, the real numbers should
include all the rational numbers and have the + and * operators. Namely, the real number
system that we construct should form a field. We say that a set along with two operations
(+, %) is a field if it satisfies the following properties,

1. Closure under addition and multiplication. Consider a,b € F' where F' is a field, then
we know that a+b € F and axb € F. Intuitively speaking, if we are operating within
a field, we should never get an element that in not included within that field

2. Associativity under addition and multiplication. Let a,b,c € F then a + (b+ ¢) =
(a+b) +cand ax (bxc) = (ax*b)xc.

3. Commutativity of addition and multiplication. Let a,b € F then a +b = b+ a and
axb=bxa

4. Existence of the additive identity. There exists the element 0 such that Va,a 4+ 0 =
O+a=a

5. Existence of the multiplicative identity. There exists an element 1 such that Va,ax1 =
lxa=a

6. Existence of additive inverse. For every element a there exists an element —a such that
a+(—a)=0

7. Existence of the multiplicative inverse. For every element a # 0 there exists an element
a ! such that axa™! =1

8. Distributivity, For every element a,b,c, ax (b+c¢) =a*xb+ a*c.
A correct construction of the Real number system must satisfy all of these axioms. In this

problem set you are not expected to prove anything about the Reals but we expect that you
have a basic understanding of their definition, and the operations that we define.

We will look at several examples of fields in this problem set, and represent a field with the
following signature:

module type FIELD = sig
(xx [t] is the type of the element in the field. x)
type t

(x* [zero] is the additive identity x)
val zero : t

(¥* [one] is the multiplicative identity x*)
val one : t

(**x [add a b] returns [a + b] *)
val add : t -> t -> t

(** [mul a b] returns [a * b] *)
val mul : t -> t -> t

(x** [neg x] returns [-x], the additive inverse of x *)
val neg : t -> t

(% [inv x] returns [1/x], the multiplicative inverse of x
* precondition: x is not equal to 0 x*)
val inv : t -> t

(** [num_of_big_int b] returns the field representation of Big
val num_of_big_int : big_int -> t

(** [num_of_int i] returns the field representation of int [i]
val num_of_int : int -> t
end

An ordered field is a field with a total ordering of its elements. We implement them with
another signature, OrderedField, which includes the FIELD signature above.

module type OrderedField = sig
include FIELD

(¥* [cmp a b] returns an integer i, such that:
* if a is greater than b, then i>0

* if a is equal to b, then i=0
* 1if a is less than b, then i < 0
*)
val cmp : t -> t -> int
end

Int [b]

We provide you with an example implementation of this signature: the module Floats
implemented with OCaml’s floats that attempts to represent the real numbers, R. Unfor-
tunately, floats have limited precision, and operations on the floats are not guaranteed to
be mathematically correct. Thus, while the Floats has signature OrderedField, it does
not actually implement a mathematical field. This is supported by the fact that, were we
to strictly interpret our function specifications, this implementation would not be valid—e.g.
[Floats.add x y] does not necessarily equal the mathematical sum of x and y.

0.1 Rational Numbers

Before you implement the reals, you must implement the rational numbers. A rational
number is a number of the form p/q, where p and ¢ are integers and ¢ is nonzero. 2/1, 4/2,
and 3/7 are rational numbers; 7 and e are not.

All natural numbers are integers, all integers are rational numbers, all rational numbers are
real numbers, and so on. The rational numbers are a field, so the signature Q for them,
below, will include the OrderedField module:

module type Q = sig
include OrderedField

(** [make p ql] returns [Some x] where [x] represents the
rational [p/ql] if [q <> 0] and [None] otherwise. x)
val make : big_int -> big_int -> t option

(x* [eq a b] returns [a = b]l. *)
val eq : t -> t -> bool

(**x [sub a b] returns [a - b]. *)
val sub : t -> t -> t

(xx [div a b] returns [a / b].
* precondition: b is not zero *)
val div : t -> t -> t

(xx [abs x] returns x if x is non-negetive and [neg x] otherwi
val abs : t -> t

(¥* [ceil x] returns the smallest integer that is strictly
greater than x *)
val ceil : t -> ¢t

(x**x [max a b] returns [a] if a>=b , [b] otherwise. *)
val max : t -> t -> t

Se.

(x*x [gcd a b] returns the gcd of [a] and [b] *)
val gcd : t -> t -> t

(x**x [to_int x] returns (p,q) where x is a rational representing p/q
* it is undefined if p or g cannot be represented as integers x*)
val to_int : t -> int * int

(xx [to_string x] returns a string version of your rational
* For testing: implementation is up to you *)
val to_string : t -> string
end

Exercise 3.

[code] Implement a module Rationals for the rational numbers with the above signature.
Once again, to avoid overflow errors, you must implement this module using Big Ints instead
of ints: specifically, you are given that Rational.t is a tuple of big_ints, in which the tuple
(p,q) represents rational number p/q. Your implementation must maintain the invariant that
for every value v of type t returned from a function specified in the Q signature, v is in reduced
form (hint: there is a gcd_big_int function in Big_int).

0.2 The Real Numbers

Exercise 4: Definition of Real Numbers.

[code] As you learned in class, a real number can be defined as an infinite sequence of
rational numbers getting closer and closer together. The formal given to us by Bishop of a
constructive real numbers is as follows.
Definition: Let, {z;} denote an infinite sequence of rational numbers (e.g. {q1, g2, g3, ... })-
We say that {xz;} is regular if for all m,n € N,

1 1

n m

We say that a real number r € R is regular sequence of rational numbers {z;}, i.e r = {z;}

When defining addition and multiplication, it is important that this definition holds. This
definition of real numbers motivates our type definition for our Real module. Namely, a real
number is nothing more than a function from the natural numbers to the rational numbers,
ier:N— Q.

TODO: Examine the unimplemented MakeReal functor we have provided. It is a functor
that takes a module of signature N and a module of signature Q, and returns a module with
the following signature:

sig
include OrderedField

(**x [make_real_from_rational x] returns the
representation of x as a real number x*)
val make_real_from_rational : Rat.t -> t

(x* [approx x n] returns a rational q such that [x-ql< 1/n *)
val approx : t -> Nat.t -> Rat.t
end with type t = Nat.t -> Rat.t

Note the definition for the type t in the MakeReal functor in fields.ml that we have given
you, and how that definition corresponds with the above definition of a real number. We
specify that type t = Nat.t -> Rat.t in the signature to expose this type outside of its
implementation.

TODO: Implement approx: t -> Nat.t -> Rat.t based on this information.

Exercise 5: Rationals as Reals, Multiplicative and Additive Identi-
ties.

[code] Surely, the field of Reals needs to contain rational numbers as well. This is done in
the simplest way; we take a constant sequence. In other words, if § € R, then § = {g}. The
proof that this sequence satisfies the definition of rationals is trivial.

TODO: Implement the make_real_from_rational: Rat.t -> t, one: t, and zero: t
functions in the MakeReal functor in ps3.ml.

Exercise 6: Definition of Addition, and Negation.

[code] Addition and Negation are done in the following way.

Definition: Let 2 = {x,} and y = {y,,} be two real numbers. Then = + y = {xa, + yon}-
We claim that by adding real numbers this way will make the sequence a valid sequence.
Indeed, let z = x + y, then

|zn - zm| - |x2n + Yon — Tom — y2m|

< [@2n — Tom| + [Y2n — Yom|
PR T S
“2n 2m 2n 2m n m
Definition: Let x = {z,} be a real number, its additive inverse is then given by

—x = {—x,}. The proof of this is trivial. And we see that x + (—x) = {x2, — x2,} = {0}.

10

TODO: Given the above definitions, implement the add: t -> t -> t and negate: t-> t
function in the MakeReal functor.

Exercise 7: Defining Multiplication.

[code] Defining multiplication is a little trickier. The reason is that defining multiplication the
naive way, i.e x *y = {x,y,} will break the regularity requirement. To define multiplication,
we need an upper bound. That is for every x € R we need some number K, such that
Vn e N

Luckily this number can be found by finding the least integer which is greater than |z;|+ 2.
We call K, the canonical bound for z. Using this value, we can now define multiplication
Definition: Let z = {z,} and y = {y,} be real numbers with canonical bounds K,, K,
respectively. Let k = max(K,,). Then,

T*xy = {$2k‘ny2kn}

We claim that this definition of multiplication will satisfy the regularity of the sequence.
Indeed, let x,y be real numbers and let z = x * y, then

|20 — Zm| = |ToknYorn — Tokm¥Y2km| = |T2knY2kn — ToknYokm + TaknY2km — T2kmY2km|

S |x2kn|’y2kn - y2km| + ‘y2km||x2kn - kam’
1 1 1 1 1 1
<k k e
- (2kzn+2k5m)+ (2km+2kn) m+n
This shows that the regularity requirement is satisfied by multiplication.
TODO: Given the above definition of multiplication, implement the multiply: t -> t -> t

function in the MakeReal functor

Exercise 8: Defining Inverses.

You are given the implementation if inverse in fields.ml! You DO NOT have to write
your own implementation. However, if you are curious, the reasoning behind the provided
implementation is given below.

Defining inverses is perhaps the trickiest operation. The reason for this is that the naive
implementation 27! = {271} does not account for the fact that an element in the sequence
might be zero. Luckily it a known fact that if x # 0 then it will have at most a finite number
of zeroes in its sequence. In other words, there exists a point in the sequence n such that
Ym > n.

[Zm| > N -
After some point every element in the sequence is bounded from below. Our challenge is to
find that N. First, consider the following definition of a positive number.
Definition: A real number x = {z,} is said to be positive if
Ty > nt

11

For some n. Now we can prove that positive real numbers are bounded from below.
Therefore, for every positive real number x we can find some n such that the definition holds.
We claim that if we let N € Z satisfy,

2< 1
—<z,—n
NS

then Vm > N,
Ty > N1

After finding N we are now able to define inverses as follows

Definition: Let x be a non-zero real number. There exists a positive integer N with

| %] > N~ for m > N. Then we define the inverser y = z71,

Yo = (zy2)"" (n < N)

Yn = ($nN2)_1 (n>N)

We assert that this construction will provide a regular sequence and thus is a well-defined
real number. We recommend reading chapter 2 of Erett Bishop’s book for a full proof.

Exercise 9: Implementing a comparison operator.
[code] Recall the definition of a regular sequence of rational numbers {x; }:
1 1
|2y — 2| < —+ —,Vm,neN
n o m
Thus, lim, o |[Tn — Tm| < %,Vn € N. Conceptually, this states that rational number z,, is
at most % away from the rational number that {z;} converges to. From this logic follows the

definition of equality and the definition of a positive number, as stated before in exercise 8.
Definition: Two real numbers x = {z;},y = {v;} are equal if

2
|z, —yn| < —, for all n e N
n

Definition: A real number x = {z,} is positive if
z, >n" ', for some n

Lastly, from these definitions, we define greater and less than.
Definition: Let x and y be real numbers. Then,

r>y(ory<uz)ifr—yeRT

TODO: Given the above definitions of equality, a positive number, and greater and less
than, implement the cmp: t -> t -> t function in the MakeReal functor.

12

Implementing the square root

Congratulations! Up to this point, you have built from scratch a powerful real number system
supporting arbitrary e = 1/n precision. To fully appreciate the awesomeness of this module,
you will implement the square root function on the Reals, which will give you arbitrarily
precise representation of an iconic irrational number, v/2.

Exercise 10: Square Root of Reals.

[code] Consider a nonnegative real z = {x,}, i.e. ¥Yn > 0,2, > —n~'. This constraint is just
to ensure the square root of x is indeed real.

Now the intuition of taking square root of a sequence of rationals is naturally to take square
root of each element individually, but we don’t know how to efficiently do that for an arbitrary
rational. Fortunately we do know how to find the square root of a non-negative integer.
In fact as you might have seen in class, finding the int-sqrt of an integer n can be done
in O(logn) time. Put more formally, given n € N, m = isqrt(n) if m € N;m? < n and
(m+1)? > n.

TODO: Implement the helper function isqrt in sqrt.

To use isqrt, we need to approximate x,, by integers. This can be done by rewriting

Ty, = Pn/Gn = ap/2n for some a, € Z

a, can be solved by the following formula. Note that here the division is integer division.

ap = (pn * 2n>/Qn

Now let’s define y = y,, by
Yn = isqrt(a, * 2n)/2n

It’s easy to verify that y? approximates x, by only the errors incurred by integer square
root. Note that here there is indeed some caveats: we have actually introduced two types of
errors. The error in approximating x, with a, and the error in approximating the integer
square root of a,. Fortunately both these errors can be simultaneously bound and y,, here is
still regular, and in fact y is the square root of x. For those who are interested in the proof,
please consult Mark Bickford’s ” Constructive Analysis and Experimental Mathematics using
the NuPrl Proof Assistant”.

TODO: Implement sqrt: Reals.t -> Reals.t

Now you can plug in some numbers built from rationals into your sqrt functions and approx-
imate v/2 to any precision you like!

13

List Sort and Functors

As we have implemented the OrderedField signature with several different modules, we
can write functions that apply to all ordered fields, by only using the values defined by
that signature. We do this by creating a functor FieldFunctions, which takes in a mod-
ule F : OrderedField and returns a new module containing functions specific to the field
module inputted. These new functions are specified by FieldFunctions’s signature:

sig
(¥* Sorts a list with unique elements according to F.cmp *)
val sort_list : F.t list -> F.t list

end

Exercise 11.

[code] Implement the sort_list function, which should sort a list that has only unique elements
into increasing order using the ordered field’s comparison function. Recall that comparison
function will return 0 if its arguments compare as equal, a positive integer if the first is
greater than the second, and a negative integer if the first is smaller.

let rec sort_list (lst: F.t list) : F.t list =

For example,

Floats.FloatFunctions.sort_list [1.; 5.; 4.; 0.]1;;
- : float 1list = [0.; 1.; 4.; 5.]

You can find a couple more examples in test.ml.

This function must be implemented by using recursion. You can use List module functions,
with the exception of the list sorting functions (List.sort, List.stable_sort, etc. In other
words, any functions under the “Sorting” banner in the List Module reference). Your sort
algorithm must scale in a reasonable fashion with the list length.

Exercise 12.

[written] Briefly explain why sorting won’t work with our definition of real numbers without
the stipulation that the list contains only unique elements.

14

http://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html

Specifications and Logic
Exercise 13.

[written] Write formal specifications (including preconditions(s), postcondition(s)) for the
following functions:

i. gcd, in the signature Q

ii. sqrt, from exercise 10

iii. sort_list, from exercise 11

Exercise 14.

[written]Expand the following abbreviated logical formulas into their primitive definitions,
e.g. ~ atoa — Void. Then give a program in the corresponding type and comment on
how it provides evidence for the “computational truth” of the formula.

1. ~(aVh) =~ak ~f
2. (a=N&(B=>7)=>(aVp) =7

3. (a=0)=(~f=~a)

15

Comments

[written] At the end of the file, please include any comments you have about the problem
set, or about your implementation. This would be a good place to document any extra
Karma problems that you did (see below), to list any problems with your submission that
you weren’t able to fix, or to give us general feedback about the problem set.

Release files

The accompanying release file ps3.zip contains the following files:

writeup.pdf is this file.
e .ocamlinit to help you with utop configurations.

release/naturals.ml, release/fields.ml and written.txt are templates for you
to fill in and submit.

The .mli files contain the interface and documentation for the functions that you will
implement in their respective .ml files

16

	Rational Numbers
	The Real Numbers

