CS 3110 Spring 2017
Problem Set 2
Version 1 (last modified February 23, 2017)

Overview

This assignment reinforces the use of recursion when approaching certain types of problems.
We will emphasize the use of map, fold_left, and fold_right as well as work on many
methods involving list manipulation. Furthermore, this problem set contains two sections
that introduce the use of data structures in OCaml by defining new types. This assignment
must be done individually.

Objectives

e Gain familiarity and practice with folding and mapping.

e Practice writing programs in the functional style using immutable data, recursion, and
higher-order functions.

e Introduce data structures in OCaml and get familiar with using defined types for
manipulating data.

Recommended reading

The following supplementary materials may be helpful in completing this assignment:

e Lectures 2 3 45
e The CS 3110 style guide

e The OCaml tutorial

Introduction to Objective Caml

Real World OCaml, Chapters 1-3

What to turn in

Exercises marked [code] should be placed in corresponding .m1 files and will be graded au-
tomatically. Please do not change any .m1i files. Exercises marked [written], if any, should
be placed in written.txt or written.pdf and will be graded by hand. Karma questions
are not required and will not affect your grade in any way. They are there as
challenges that we think may be interesting.

http://www.cs.cornell.edu/courses/cs3110/2017sp/lectures/2/CS3110sp17-Lect2.pdf
http://www.cs.cornell.edu/courses/cs3110/2017sp/lectures/3/CS3110-2017sp-Lecture3.pdf
http://www.cs.cornell.edu/courses/cs3110/2017sp/lectures/4/CS3110-2017sp-Lecture4.pdf
http://www.cs.cornell.edu/courses/cs3110/2017sp/lectures/5/CS3110-2017sp-Lecture5.pdf
http://www.cs.cornell.edu/courses/cs3110/2017sp/handouts/style.html
http://ocaml.org/learn/tutorials/
http://www.cs.caltech.edu/courses/cs134/cs134b/book.pdf
https://realworldocaml.org/v1/en/html/index.html

Compiling and testing your code

For this problem set we have provided a Makefile and testcases.

e To compile your code, run make main
e To test your code, run make test

e To remove files from a previous build, run make clean

Please note that any submissions that do not compile will get an immediate 10% deduction
from their original grade.

Some final notes

For loops and while loops are not allowed; just try to think recursively!

We are not looking for highly optimized or efficient code, just code that shows good use of
functional programming concepts. You are free to write internal helper functions (but not
external helper functions). If a function contains rec, your internal functions may also be
recursive (and if a function does not contain rec, recursive helper functions will result in loss
of points). You are free to use any previously defined function in subsequent problems.

Between The Folds

[code] All the subparts of this exercise must be implemented entirely by

e Writing one or more internal helper functions;

e calling List.fold_left or List.fold_right with one of those helper functions, some initial
accumulator, and the input list; and

e doing a single pattern-match, if necessary, to extract the answer from the return value
of the fold.

The signatures for all these functions are in the file fold_recs.ml. Note that not all these steps
are necessary for every exercise. You may also use List.rev, as well as List.hd and List.tl
(but beware of using the latter two with good style). You should consider the efficiency
of your solution, particularly when choosing between fold_left and fold_right. You may
not use the rec keyword in your solutions, nor may you use any List module
functions other than fold_left, fold_right, rev, hd, and tl. These prohibitions are
designed to ensure that you get practice using folding.

(a) [code] Implement the tail_rec_map function, a tail recursive implementation of List.map.

let tail_recursive_map (f: ’a -> ’b) (1: ’a list) : ’b list =

For example:

tail_recursive_map (fun x -> x+1) [1; 2; 3];;
- : int 1list = [2; 3; 4]

(b) [code] Implement the mapi function. Function f is applied to the index of the element as
the first argument and the element itself as the second argument.

let mapi (f: int -> ’a -> ’b) (l: ’a 1list) : ’b list =

For example:

mapi (fun i elt -> if (i mod 2 = 0) then elt+l else elt+2)
[1; 2; 3; 4; 51;;
- : int 1list = [2; 4; 4; 6; 6]

(¢) [code] Implement the count_vote function, which takes a boolean list and outputs a tuple
(t, f) containing t, the number of true elements in the list, and f, the number of false
elements in the list.

let count_vote (1l: bool 1list) : int * int =

For example:

count_vote [true; true; true; false; true; falsel;;
- : int * int = (4, 2)

[code] Implement the partition function, which takes a predicate function and a list,
and outputs a tuple (11, 12) where 11 contains the elements of the list that satisfy the
predicate, and 12 contains the elements of the function that do not.

let partition (p: ’a -> bool) (1l: ’a 1list) : ’a list * ’a list =

For example:

partition (fun x -> x > 3) [1; 3; 4; 2; 5; 2; 0; 8]1;;
- : int 1list * int list = ([4; 5; 8], [1; 3; 2; 2; 01)

Folding functions return the accumulator after the entire input list has been processed.
Scanning functions instead return a list of each value taken by the accumulator during
processing. For example:

fold_left (+) 0 [1; 2; 31;;
- : int = 6

scan_left (+) 0 [1; 2; 31;;
- : int 1list = [0; 1; 3; 6]

scan_right (+) [1; 2; 3] 0;;
- : dint 1list = [0; 3; 5; 6]

scan_left (°) "swag" ["zar"; "doz"];;

- : string list = ["swag"; "swagzar"; "swagzardoz"]
scan_right (°) ["zar"; "doz"] "swag";;

- : string list = ["swag"; "dozswag"; "zardozswag"]

(e) [code] Implement the two functions, scan_left and scan_right.

let scan_left (f: ’a -> ’b -> ’a) (acc: ’a)
(1: b 1list) : ’a list =

let scan_right (f: ’a -> b -> ’b) (1l: ’a list)
(acc: ’b) : ’b list =

Recursion Returns

[code] All the subparts of this exercise must be implemented entirely by using recursion.
You can not use list functions, with the exception of List.rev and List.length. The signature
of these subparts are in the fold_recs.ml file.

(a) [code] Implement the sep_list function, which separates a list of elements into consecu-

~—

tive element sublists.

let rec sep_list (1: ’a list) : ’a list list =

For example:

sep_list [1; 1; 1; 2; 3; 3; 1; 1; 5; 5; 5; 5];;
- : int list list = [[1; 1; 11; [21; [3; 3]; [1; 11; [5; 5; 5; 511

[code] Implement the slice_list function, which extracts a slice from a list.

let rec slice_list (1: ’a 1list) (i: int) (j: int) : ’a list =

Given indices i and j, slice_list returns the list of elements from index i to j, inclusive.
Assume 0 < i and j < length of 1. For indices that are out of bounds, the behavior is
unspecified. For example:

n

ll]

Slice_list [IIaH; llbll; IICII; lldll; n
- : Strlng liSt = [llbll; IICII; Hdll; n

e ufn; ngu] 1 4;;
e

(c) [code] Implement the rotate_list function, which rotates a list’s elements by n places to

~—

the left. If n > length of the list, the function should continue to rotate.

let rec rotate_list (1: ’a 1list) (m: dint) : ’a list =

For example:

rotate_list [nan; "b"; "C"; ”d"; uen; ufu; ugn] (2);;
- . string list = ["C"; "d"; uen; nfn; ugn; nau; nbn]

rotate_list [uan; Hb"; ”C"; "d"; uen; nfu; HgH] (_2);;
- String list = [ufn; ngu; nan; nbn; ”C”; "d"; nen]

rotate_list [nan; "b"; ”C"; lldll; llell; "f"; ||gn] (1o>;;
= g string list = ["d"; neu; nfn; ngn; uan; "b"; nen

For the next questions, we define our own list type:

type ’a mylist = Nil | Cons of ’a * ’a mylist

[code] Implement the fold_left function for ’a mylists.

let rec fold_left (f: ’a -> ’b -> ’a) (acc: ’a)
(1: ’b mylist) : ’a =

(e) [code] Implement the fold_right function for ’a mylists.

let rec fold_right (f: ’a -> ’b -> ’b) (1l: ’a mylist)
(acc: ’b) : ’b =

The Matrix

For this problem, you will write your solutions in the last section of the fold_recs.ml file.
A matrix can be thought of as a 2-dimensional array. OCaml has an Array module, but
we won’t use that in this problem. Instead, we will represent matrices as int list lists.
For example, the matrix m, represented as follows,

let m = [[1; 2; 3]; [4; 5; 6]1]

has element 2 at location [0][1].

A valid matrix is an int list list that has at least one row, at least one column, and
in which every column has the same number of rows. There are many values of type int
list list that are invalid. For example:

[]
[[1; 2]; ([3]1]

[code] Implement the is_valid_matrix function, which returns whether the input matrix
is valid.

let rec is_valid_matrix (m: ’a list list) : bool =

For example:

is_valid_matrix [[2; 3]; [4; 5]; [0; 111 ;;
- : bool = true

is_valid_matrix [[2; 3]; [5]1; [0; 111 ;;

- : bool = false

[code] Implement the add_matrices function, which performs matrix addition. If the two
input matrices are not the same size, the behavior is unspecified.

let rec add_matrices (ml: int list 1list)
(m2: int list list) : int list list =

For example:

add_matrices [[2; 31; [4; 51; [0; 111 [[0; 21; [3; 21; [1; 111;;
- : int 1list list = [[2; 5]1; [7; 71; [1; 2]1]

[code] KARMA: Implement the mult_matrix function, which performs matrix multipli-
cation. If the two input matrices are not of sizes that can be multiplied together, the
behavior is unspecified.

let rec mult_matrices (ml: int 1list list)
(m2: int list 1list) : int list list =

For example:

mult_matrices [[2; 1]1; [3; 2]]1 [[-8; -4; 31; [-2; 1; 411 ;;
- : dint 1list list = [[-18; -7; 10]1; [-28; -10; 1711

Tries - A New Hope

For this problem, we will ask you to implement some functions that allow users to create,
manipulate, and work with a very interesting type of data structure called Trie. Tries, simply
put, are a type of search tree that are usually used to store strings. The general purpose of a
trie is to determine whether a word has been inserted into the data structure in linear time.
What makes tries so special is that they allow users to quickly determine if a given string is
a prefix of any of the words we have stored in the trie. This is why tries are very useful for
certain applications involving dictionaries.

For this particular problem, we will consider a more general variation of tries that will allow
us to insert duplicate words into the data structure so that we can later count how many
words have been inserted in total. The definition of a trie, for the sake of this problem set,
is the following one:

e A trie is a search tree 1" where the every node in T has a number associated to it and
every edge in 7" has a label, which in this case will be a character, associated to it. We
will refer to the number associated to node v as the count of v.

e When we initialize an empty trie, we will construct a root node v, whose count is
initialized as zero and edge set is empty. The count in this root node will represent
the number of times we have inserted the empty string ”” into our trie 7'

e For every node w in T, if there is a path from v, to w with edges ey, es, ..., €, and cor-
responding labels (i.e. letters) ¢, ¢, ..., ¢, then the number of times we have inserted
the word ¢yce -+ - ¢, in T is going to be equal to the number stored in node w (i.e. the
count of w).

For our implementation, we will assume that all words are in lowercase and they have no
blank-spaces in them. For example, a trie containing the words "ocaml”, "ocam”, "help”,
"hello”, "hell”, "help” will look like the tree in figure 1. Note that in that figure the count
of each node is the integer inside the node itself and the red characters are the labels of each
edge.

Now in order to implement in this in OCaml, we will define the following type:

type trie = Trie of int * ((char*trie) list)

Here we recursively encode a trie T" as a tuple (¢, Ly) where ¢ represents the count at the
root of T'; and Ly is a list of elements of the form (¢;, T;) that represent the set of edges
for the root ((¢;, T;) represents an edge with label ¢; that goes to sub-tree T;). For example,
under this definition we can define an empty trie as

let empty_trie = Trie (0, [])

https://en.wikipedia.org/wiki/Trie

Figure 1: example of a Trie.

With this type definition in hand, please refer to tries.ml in order to complete the following
methods:

1. [code] Implement the function add_string that takes an instance t of type trie and
a string s and returns a new instance of type trie that is exactly like t but with
the string s now inserted into the trie. You may assume that the input string is in
lowercase and does not contain any whitespace.

2. [code] Implement the function remove_string that takes a (t:trie) and a (s:string) and
returns a trie that represents the result of removing one copy of s from t. If s is not a
string in ¢, then this method simply returns the original trie. Furthermore, if the trie
has two or more copies of s inserted in it, then we simply remove one of the copies.
Hint: this is easier than what it sounds. As far as we are concerned, we do not care
about memory consumption right now so you don’t have to remove extra nodes from
the trie if this makes removal easier.

3. [code] Implement the function total_num that takes a trie and returns the total num-
ber of strings that have been inserted into the trie. For the example in figure 1, this
function would return 6.

4. [code] Implement the function count_string that takes a trie and a string and returns
the number of times we have inserted the given string into the trie. If the string has
not been inserted, then this function should return zero.

5. [code] Implement the function get_unique_strings that takes a trie and returns a string
list that contains all the unique strings that have been inserted into the trie. This is,
if a string has been inserted twice, we just include it once in the resulting list. The

ordering of the strings in the resulting list can be arbitrary. For our example in figure
1, this function would return the list

["ocaml"; "ocam"; "help"; "hello"; "hell"]

. [code] Implement the function prefix_strings that takes a trie and a string representing
a prefix and returns a list containing all unique strings that have been previously
inserted into the trie and start with the given prefix.

For example, if we try this function on the trie of figure 1 with prefix ”he”, the resulting
list will be

["help"; "hell"; "hello"]

If there are no strings with the given prefix, then simply return an empty list. Hint:
you are allowed to reuse any of the functions above to help you implement this function.

10

KARMA A Game of Words

After retiring from the presidency, Barack Obama finds himself pretty bored and con-
stantly looking for ways to spend his free time. One afternoon, while talking about life
and how short it is with his wife Michelle, they decided to learn Spanish; thinking that
learning this language will let them enjoy a nice vacation together in the Galapagos
Islands. In order to facilitate this learning process, they decide to play the follow-
ing game: Michelle will select a random set of non-empty words W from a Spanish
dictionary she owns. With this set of words in hand, they will construct a word in
Spanish together by starting with the empty string and, in alternating turns, add
one letter to the string with the only condition that, at all times, the resulting string
must be a valid prefix of at least one string in VW. However, in order to make their
time together even more fun they agreed that they will play this game T times and
the ultimate-winner of the day will be the person that wins the T*" game. Because
Michelle was the one who selected the words in W, they agreed that Barack will be
the first player of the first game and whomever looses the i*" game will be the
first player of the (i + 1) game.

Given all of this, implement the function word_play_winner that takes a list of strings
words and a positive integer n and returns "Barack" if Barack has a winning strat-
egy to obtain the title of "ultimate-winner”, assuming they both play optimally, and
"Michelle" otherwise. You may use any of the functions/data structures implemented
in this problem set to solve this problem.

Hint: tries and prefixes usually like to hang-out a lot together.

11

http://www.cnn.com/2017/02/07/politics/barack-obama-kitesurfing-richard-branson/
https://ecuador.travel/destination/galapagos-islands-ecuador/
https://ecuador.travel/destination/galapagos-islands-ecuador/

KARMA A Clockwork Church

The objective of this problem is to get you more comfortable with the use of high-level func-
tions by introducing a concept that is very interesting and mathematically elegant. In this
section, we will work describe a way to represent natural numbers using only functions. This
form of encoding was first described by the mathematician Alonzo Church in order to show
that his lambda calculus, the most primitive and simple functional language, could encode
any data structure with the simple use of function applications. This is a very powerful idea
as it shows how simple things can build up to encode the complexity we usually attribute to
most computations.

The idea behind this encoding is the following: we will encode a natural number n with a
high-order function that takes as an argument an arbitrary function f and a value z. The
function returns the result of the n-fold application of function f on value x. In other words,
the integer n is represented by a function g,(f,x) that returns the following value:

gn(fr) = (@) = f(J (- f2)--)

n times

With this definition, we can nicely and elegantly encode operations of naturals such as
addition, subtraction, multiplication, and exponentiation. For example, the function that
encodes the number 0 will be the identity function go(f,z) = x.

The function f that is fed into our encoding g, (f, z) for a natural number n must have type
a — «a. The type of x must also be a. This would imply that the type of a church encoding
for n will be (¢ = @) = a — «a. In order to work with these encodings in OCaml, we will
define the following OCaml type that allow us to represent a high-order function whose type
is (> a) > a—

type church = Ch of ((church -> church) -> church -> church)

For example, under this scheme we can define an encoding for zero as

let zero = Ch (fun f -> fun x -> x)

Furthermore, we can make functions that operate on Church encodings like the following
function inc that takes a Church encoding of n and returns the Church encoding of n + 1

let inc (Ch n:church) : church = (fun f -> fun x -> f (n f x))

Note that all we do is return a high-order function that takes a function f, and element x
and returns f(g,(f,x)). This is equivalent to applying f n + 1 times on argument x. With
this as a tool, we will ask you to implement the following functions:

12

. [code] Implement the constant one that represents the church encoding that represents
the natural number 1.

. [code] Implement the function add that takes two church encodings n and m and returns
the church encoding of the addition of n and m.

. [code] Implement the function mult that takes two church encodings n and m and
returns the church encoding of the product of n and m.

. [code] Implement the function exp that takes two church encodings n and m and returns
the church encoding of n". In this case the first argument is n and the second argument
Is m.

. [code] Now that we can encode natural numbers, we can easily encode booleans as well
through the following definitions:

let true_c = one
let false_c = zero

Using this definitions, implement the function is_zero that takes a church numeral n
and returns true_c if n is equal to zero, otherwise it returns false_c.

Comments

[written] Please include any comments you have about the problem set, or about your im-
plementation. This would be a good place to document any extra Karma problems that you
did (see below), to list any problems with your submission that you weren’t able to fix, or
to give us general feedback about the problem set.

Release files

The accompanying release file ps2.zip contains the following files:

writeup.pdf is this file.

release/fold recs.ml, release/trie.ml, release/word game.ml, and release/church.ml are

the files that you need to fill in.

release/fold recs.mli, release/trie.mli, release/word game.mli, and release/church.mli
contain the interface and documentation for the functions that you need to implement.

Makefile a make file to build the files related to this assignment. Please do not change
this file.

main.ml is a dummy file used to compile all the files for this assignment.

13

e test.ml has tests for the first two parts of the assignments.

Important note: these tests are not comprehensive and we strongly suggest that you
should further test your implementation.

e updates.txt information on revisions of this pset

14

