Induction in Coq

Prof. Clarkson
Fall 2017

Today’s music: *Pictures of Pandas Painting* by They Might Be Giants
Review

Previously in 3110:
• Functional programming in Coq
• Logic in Coq
• Curry-Howard correspondence (proofs are programs)

Today:
• Induction in Coq
REVIEW:
INDUCTION ON NATURAL NUMBERS
Structure of inductive proof

Theorem:
for all natural numbers \(n \), \(P(n) \).

Proof: by induction on \(n \)

Case: \(n = 0 \)
Show: \(P(0) \)

Case: \(n = k+1 \)
IH: \(P(k) \)
Show: \(P(k+1) \)

QED
Sum to n

let rec sum_to n =
 if n=0 then 0
 else n + sum_to (n-1)

Theorem:
for all natural numbers \(n \),
\[\sum_{i=0}^{n} i \]

\(\text{sum_to} \ n = n \times (n+1) / 2. \)

Proof: by induction on \(n \)

\(P(n) \equiv (\text{sum_to} \ n = n \times (n+1) / 2) \)
Base case

Case: \(n = 0 \)

Show:

\[P(0) \]
\[\equiv \text{sum}_\text{to} 0 = 0 \ast (0+1) / 2 \]
\[\equiv 0 = 0 \ast (0+1) / 2 \]
\[\equiv 0 = 0 \]

let rec sum_to n =
 if n=0 then 0
 else n + sum_to (n-1)
Inductive case

Case: \(n = k + 1 \)

IH: \(P(k) \equiv \text{sum_to} \ k = k \times (k+1) / 2 \)

Show:

\[
\begin{align*}
P(k+1) & \equiv \text{sum_to} \ (k+1) = (k+1) \times (k+2) / 2 \\
& \equiv (k+1) + \text{sum_to} \ (k+1-1) = (k+1) \times (k+2) / 2 \\
& \equiv (k+1) + \text{sum_to} \ k = (k+1) \times (k+2) / 2 \\
& \equiv (k+1) + k \times (k+1) / 2 = (k+1) \times (k+2) / 2
\end{align*}
\]

and that holds by algebraic reasoning

QED

let rec sum_to n =
 if n=0 then 0
 else n + sum_to (n-1)
Yup, induction

WHEN YOUR INSTRUCTOR

WANTS YOU TO USE INDUCTION
INDUCTION ON LISTS
Structure of inductive proof

Theorem:
for all natural numbers n, P(n).

Proof: by induction on n

Case: n = 0
Show: P(0)

Case: n = k + 1
IH: P(k)
Show: P(k + 1)

QED
Structure of inductive proof

Theorem: for all lists \(\text{lst} \), \(P(\text{lst}) \).

Proof: by induction on \(\text{lst} \)

Case: \(\text{lst} = [] \)
Show: \(P([]) \)

Case: \(\text{lst} = h::t \)
IH: \(P(t) \)
Show: \(P(h::t) \)

QED
Append nil

\[
\text{let rec } (@) \text{ lst1 lst2 } = \\
\text{match lst1 with} \\
\quad | \text{[]} \rightarrow \text{lst2} \\
\quad | \text{h::t} \rightarrow \text{h :: (t @ lst2)}
\]

Theorem:
for all lists lst, lst @ [] = lst.

Proof: by induction on lst

\[
P(\text{lst}) \equiv \text{lst @ []} = \text{lst}
\]
Base case

Case: \(\text{lst} = [] \)

Show:

\[
P([])
\equiv [] @ [] = []
\equiv [] = []
\]
Inductive case

\[\text{P(lst)} \equiv \text{lst @ [] = lst} \]

Case: \(\text{lst = h::t} \)

IH: \(\text{P(t)} \equiv \text{t @ [] = t} \)

Show:

\[\text{P(h::t)} \]
\[\equiv (h::t) @ [] = h::t \]
\[\equiv h::(t @ []) = h::t \]
\[\equiv h::t = h::t \]

QED
Append nil in Coq

Theorem app_nil :
 forall (A:Type) (lst : list A),
 lst ++ nil = lst.
Proof.
 intros A lst.
 induction lst as [| h t IH].
 - trivial.
 - simpl. rewrite -> IH. trivial.
Qed.
Theorem app_nil :
 forall (A:Type) (lst : list A),
 lst ++ nil = lst.

Proof.
 intros A lst.
 induction lst as [| h t IH].
 - trivial.
 - simpl. rewrite -> IH. trivial.

Qed.
Append is associative

Theorem app_assoc :
 forall (A:Type) (l1 l2 l3 : list A),
 l1 ++ (l2 ++ l3) = (l1 ++ l2) ++ l3.
Proof.
 intros A l1 l2 l3.
 induction l1 as [| h t IH].
 - trivial.
 - simpl. rewrite -> IH. trivial.
Qed.
INDUCTION ON NATS
Inductive types

induction works on inductive types, e.g.

Inductive list (A : Type) : Type :=
 | nil : list A
 | cons : A -> list A -> list A

Need an inductive definition of natural numbers...
Naturals

Inductive nat : Set :=
 | O : nat (* zero *)
 | S : nat -> nat (* succ *)

type nat = O | S of nat

0 is O
1 is S O
2 is S (S O)
3 is S (S (S O))

• unary representation
• Peano arithmetic
Induction on nat(ural)s

Theorem: for all $n:\text{n: nat}, P(n)$

Proof: by induction on n

Case: $n = 0$
Show: $P(0)$

Case: $n = S\ k$
IH: $P(k)$
Show: $P(S\ k)$

QED

Theorem: for all naturals n, $P(n)$

Proof: by induction on n

Case: $n = 0$
Show: $P(0)$

Case: $n = k+1$
IH: $P(k)$
Show: $P(k+1)$

QED
Goal: redo this proof in Coq

let rec sum_to n =
 if n=0 then 0
 else n + sum_to (n-1)

Theorem:
for all natural numbers n,
 sum_to n = n * (n+1) / 2.

Proof: by induction on n
Defining sum_to

Fixpoint sum_to (n:nat) : nat :=
 if n = 0 then 0
 else n + sum_to (n-1).

\textbf{Error: The term "n = 0" has type "Prop" which is not a (co-)inductive type.}

Fixpoint sum_to (n:nat) : nat :=
 if n =? 0 then 0
 else n + sum_to (n-1).

\textit{Recursive definition of sum_to is ill-formed.}

\ldots

\textit{Recursive call to sum_to has principal argument equal to "n - 1" instead of a subterm of "n".}
No infinite loops

Fixpoint inf (x:nat) : nat :=
 inf x.

Recursive definition of inf is ill-formed.

... Recursive call to inf has principal argument equal to "x" instead of a subterm of "x".
Why no infinite loops?

In OCaml:

```ocaml
# let rec inf x = inf x
val inf : 'a -> 'b = <fun>
```

By propositions-as-types, these are the same:

- 'a -> 'b
- A ⇒ B

What if A=True, B=False?

Infinite loops prove False!
Defining sum_to

Fixpoint sum_to (n:nat) : nat :=
 match n with
 | 0 => 0
 | S k => n + sum_to k
end.

sum_to is defined

k is a subterm of n, because n = S k,
Theorem sum_sq_no_div :
 forall n : nat,
 2 * sum_to n = n * (n+1).
Proof.
 intros n.
 induction n as [| k IH].
 - trivial.
 - rewrite -> sum_helper.
 rewrite -> IH.
 ring.
Qed.
Lemma sum_helper :
 forall n : nat,
 2 * sum_to (S n) = 2 * S n + 2 * sum_to n.
Proof.
 intros n. simpl. ring.
Qed.
Induction and recursion

- Intense similarity between inductive proofs and recursive functions on variants
 - In proofs: one case per constructor
 - In functions: one pattern-matching branch per constructor
 - In proofs: uses IH on "smaller" value
 - In functions: uses recursive call on "smaller" value

- Proofs = programs
- Inductive proofs = recursive programs
Upcoming events

• [next Wed] MS1 due

This is inductive.

THIS IS 3110