Functional Programming in Coq

Prof. Clarkson
Fall 2017

Today’s music: Theme from *Downton Abbey* by John Lunn
Review

Previously in 3110:
• Functional programming
• Modular programming
• Data structures
• Interpreters

Next unit of course: formal methods

Today:
• Proof assistants
• Functional programming in Coq
• Proofs about simple programs
Building reliable software

• Suppose you run a software company

• Suppose you’ve sunk 30+ person-years into developing the “next big thing”:
 – Boeing Dreamliner2 flight controller
 – Autonomous vehicle control software for Tesla
 – Gene therapy DNA tailoring algorithms
 – Super-efficient green-energy power grid controller

• How do you avoid disasters?
 – Turns out software endangers lives
 – Turns out to be impossible to build software
Approaches to validation [lec 11]

• Social
 – Code reviews
 – Extreme/Pair programming

• Methodological
 – Design patterns
 – Test-driven development
 – Version control
 – Bug tracking

• Technological
 – Static analysis ("lint" tools, FindBugs, …)
 – Fuzzers

• Mathematical
 – Sound type systems
 – "Formal" verification

Less formal: Techniques may miss problems in programs

All of these methods should be used!

Even the most formal can still have holes:
• did you prove the right thing?
• do your assumptions match reality?

More formal: eliminate with certainty as many problems as possible.
Verification

• In the 1970s, scaled to about tens of LOC
• Now, research projects scale to real software:
 – CompCert: verified C compiler
 – seL4: verified microkernel OS
 – Ynot: verified DBMS, web services
• In another 40 years?
Automated theorem provers

• You give prover a theorem
• Prover searches for:
 – a proof
 – a counterexample
 – or runs out of time
• e.g.,
 – Z3: Microsoft started shipping with device driver developer's kit in Windows 7
 – ACL2: used to verify AMD chip compliance with IEEE floating-point specification, as well as parts of the Java virtual machine
Proof assistants

• You give assistant a theorem
• You and assistant cooperatively find proof
 – Human guides the construction
 – Machine does the low-level details
• e.g.,
 – NuPRL [Prof. Constable, Cornell]: Formalization of mathematics, distributed protocols, security, ...
 – Coq: CompCert, Ynot [Dean Morrisett, Cornell], ...
coq
Coq

• **1984:** Coquand and Huet implement Coq based on calculus of inductive constructions
• **1992:** Coq ported to Caml
• Now implemented in OCaml

[Image of Thierry Coquand]
Coq for program verification

Coq program

Coq theorem

guidance with tactics

Verified OCaml program

Proof of theorem
Coq's full system
Subset of Coq we'll use
Our goals

• Write basic functional programs in Coq
 – no side effects, mutability, I/O
• Prove simple theorems in Coq
 – CS 3110 programs: lists, options, trees
 – CS 2800 mathematics: induction, logic

• Non goal: full verification of large programs
• Rather:
 – help you understand what verification involves
 – expose you to the future of functional programming
 – solidify concepts about proof and induction by developing machine-checked proofs
CAUTION: HIGHLY ADDICTIVE
FUNCTIONAL PROGRAMMING IN COQ
Language features

• Anonymous, higher-order functions
• Type inference and annotations
• Pairs
• Lists
• Pattern matching
Commands

• Let
• Check
• Print
• Compute
• Require Import
• Locate
• Inductive
THEOREMS ABOUT DAYS
A first theorem

Theorem wed_after_tue :
 next_day tue = wed.

How we might word proof for a human to read:
• "It's obvious"
OR
• next_day tue evaluates to wed.
• So we need to show wed = wed.
• That follows from the reflexivity of =
OR
• In OCaml, we'd write a test case:
 assert.equals wed (next_day tue)
A first theorem

Theorem wed_after_tue :
 next_day tue = wed.

Proof.
 auto.

Qed.

auto is a tactic that searches for a proof; succeeds here because theorem is so easy
Where is the proof?

Print \texttt{wed_after_tue}.

\texttt{wed_after_tue} = \texttt{eq_refl}:

: \texttt{next_day tuesday} = \texttt{wednesday}

axiom: equality is reflexive (and expressions may compute on either side of it)
A first theorem

Theorem wed_after_tue :
 next_day tue = wed.
Proof.
 simpl. trivial.
Qed.

simpl is a tactic that evaluates and simplifies expressions
trivial is a tactic that solves trivial equalities
THEOREMS ABOUT DAYS
A second theorem

Theorem \(\text{day}_\text{never}_\text{repeats} : \forall d, \text{next}_\text{day} d \neq d\).

Proof. Let \(d\) be some day, and proceed by case analysis on what \(d\) is.
• If \(d\) is \(\text{sun}\), then \(\text{next}_\text{day} d\) is \(\text{mon}\). \(\text{sun} \neq \text{mon}\) because they are different constructors.
• If \(d\) is \(\text{mon}\), then \(\text{next}_\text{day} d\) is \(\text{tue}\). \(\text{mon} \neq \text{tue}\) because they are different constructors.
• The other cases proceed in the same way.

Or in OCaml, we might write 7 test cases
A second theorem

Theorem day_never_repeats :
 forall d, next_day d <> d.
Proof.
 intros d. destruct d.
A second theorem

Theorem day_never_repeats :
 forall d, next_day d <> d.
Proof.
 intros d. destruct d.
 all: discriminate.
Qed.

all applies tactic to all subgoals
Upcoming events

• N/A

This is formal.

THIS IS 3110