Prelim

• See Piazza post @422
• Makeup: Thursday night 5:30 pm
• Wed noon: All requests for other makeup/conflict accommodations due to cs3110-mgmt-L@cs.cornell.edu
Review

Previously in 3110:
• Advanced data structure: streams (and laziness)

Today:
• Binary search trees
• Balanced search trees
• Running example: sets
• (Balanced trees also useful for maps)
Set interface

module type Set = sig
 type 'a t
 val we : 'a t
 val are : 'a -> 'a t -> 'a t
 val groot : 'a -> 'a t -> bool
end
Set interface

module type Set = sig

 type 'a t

 val empty : 'a t

 val insert : 'a -> 'a t -> 'a t

 val mem : 'a -> 'a t -> bool

end
Set implementations

```plaintext
module ListSet : Set = struct
  ...
end

module BstSet : Set = struct
  ...
end

module RbSet: Set = struct
  ...
end
```
Set implementations: performance

<table>
<thead>
<tr>
<th>Workload 1</th>
<th>insert</th>
<th>mem</th>
</tr>
</thead>
<tbody>
<tr>
<td>ListSet</td>
<td>35s</td>
<td>106s</td>
</tr>
</tbody>
</table>

MacBook, 1.3 GHz Intel Core m7, 8 GB RAM, OCaml 4.05.0, median of three runs
Set implementations: performance

<table>
<thead>
<tr>
<th>Workload</th>
<th>insert</th>
<th>mem</th>
</tr>
</thead>
<tbody>
<tr>
<td>ListSet</td>
<td>35s</td>
<td>106s</td>
</tr>
<tr>
<td>BstSet</td>
<td>130s</td>
<td>149s</td>
</tr>
</tbody>
</table>

MacBook, 1.3 GHz Intel Core m7, 8 GB RAM, OCaml 4.05.0, median of three runs
Set implementations: performance

<table>
<thead>
<tr>
<th></th>
<th>Workload 1</th>
<th></th>
<th>Workload 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>insert</td>
<td>mem</td>
<td>insert</td>
<td>mem</td>
</tr>
<tr>
<td>ListSet</td>
<td>35s</td>
<td>106s</td>
<td>35s</td>
<td>106s</td>
</tr>
<tr>
<td>BstSet</td>
<td>130s</td>
<td>149s</td>
<td>0.07s</td>
<td>0.07s</td>
</tr>
</tbody>
</table>

MacBook, 1.3 GHz Intel Core m7, 8 GB RAM, OCaml 4.05.0, median of three runs
Set implementations: performance

<table>
<thead>
<tr>
<th></th>
<th>Workload 1</th>
<th>Workload 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>insert</td>
<td>mem</td>
</tr>
<tr>
<td>ListSet</td>
<td>35s</td>
<td>106s</td>
</tr>
<tr>
<td>BstSet</td>
<td>130s</td>
<td>149s</td>
</tr>
<tr>
<td>RbSet</td>
<td>0.12s</td>
<td>0.07s</td>
</tr>
</tbody>
</table>

MacBook, 1.3 GHz Intel Core m7, 8 GB RAM, OCaml 4.05.0, median of three runs
Sir Tony Hoare

b. 1934

Turing Award Winner 1980

For his fundamental contributions to the definition and design of programming languages.

"We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil."
LIST VS. BST
module ListSet = struct

(* AF: [x1; ...; xn] represents the set \{x1, ..., xn\}. *)

(* RI: no duplicates. *)

(type 'a t = 'a list)

let empty = []

let mem = List.mem

let insert x s =
 if mem x s then s else x::s

end
Binary search tree (BST)

• Binary tree: we are groot
• BST invariant:
 – all values in l are less than v
 – all values in r are greater than $v
Binary search tree (BST)

- Binary tree: every node has two subtrees
- BST invariant:
 - all values in l are less than v
 - all values in r are greater than v
Question

You might remember from 2110 that finding element in list is $O(n)$. How efficient is finding an element in a BST?

A. $O(1)$
B. $O(\log n)$
C. $O(n)$
D. $O(n \log n)$
E. $O(n^2)$
Question

You might remember from 2110 that finding element in list is $O(n)$. How efficient is finding an element in a BST?

A. $O(1)$
B. $O(\log n)$
C. $O(n)$
D. $O(n \log n)$
E. $O(n^2)$
module BstSet = struct
 (* AF: [Leaf] represents the empty set.
 * [Node (l, v, r)] represents
 * the set $AF(l) \cup \{v\} \cup AF(r)$.
 * RI: for every [Node (l, v, r)],
 * all the values in [l] are strictly less than
 * [v], and all the values in [r] are strictly
 * greater than [v]. *)

 type 'a t =
 | Leaf
 | Node of 'a t * 'a * 'a t
module BstSet = struct

 ...

 let rec mem x = function
 | Leaf -> false
 | Node (l, v, r) ->
 if x < v then mem x l
 else if x > v then mem x r
 else true
BST

module BstSet = struct

...

let rec insert x = function

| Leaf -> Node (Leaf, x, Leaf)
| Node (l, v, r) ->
 if x < v then Node(insert x l, v, r)
 else if x > v then Node(l, v, insert x r)
 else Node(l, x, r)

end
Back to performance

<table>
<thead>
<tr>
<th></th>
<th>Workload 1</th>
<th>Workload 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>insert</td>
<td>mem</td>
</tr>
<tr>
<td>ListSet</td>
<td>35s</td>
<td>106s</td>
</tr>
<tr>
<td>BstSet</td>
<td>130s</td>
<td>149s</td>
</tr>
</tbody>
</table>
Workloads

• Workload 1:
 – insert: 50,000 elements in ascending order
 – mem: 100,000 elements, half of which not in set

• Workload 2:
 – insert: 50,000 elements in random order
 – mem: 100,000 elements, half of which not in set
Insert in random order

- Resulting tree depends on exact order
- One possibility for inserting 1..4 in random order 3, 2, 4, 1:
Insert in linear order

Only one possibility for inserting 1..4 in linear order
1, 2, 3, 4:

unbalanced: leaning toward the right
When trees get big

• Check out:
 – linear_bst 100
 – rand_bst 100

• Inserting next element in linear tree always takes n operations where n is number of elements in tree already

• Inserting next element in randomly-built tree might take far fewer…
all paths through *perfect binary tree* have same length: $\log_2 (n+1)$, where n is the number of nodes, recalling there are implicitly leafs below each node at bottom level
Performance of BST

- insert and mem are both $O(n)$
 - recall, big-O means worst case execution time
- But if trees always had short paths instead of long paths, could be better: $O(\log n)$
- How could we ensure short paths?
 i.e., $balance$ trees so they don't lean
Strategies for achieving balance

• In general:
 – Strengthen the RI to require balance
 – And modify insert to guarantee that RI

• Well known data structures:
 – 2-3 trees: all paths have same length
 – AVL trees: length of shortest and longest path from any node differ at most by one
 – Red-black trees: length of shortest and longest path from any node differ at most by factor of two

• All of these achieve $O(\log(n))$ insert and mem
RED-BLACK TREES
Red-black trees

- [Guibas and Sedgewick 1978], [Okasaki 1998]
- Binary search tree with each node colored red or black
- Conventions:
 - Root is always black
 - Empty leaves are considered to be black
- RI: BST +
 - No red node has a red child
 - Every path from the root to a leaf has the same number of black nodes
Question

Is this a valid rep?

A. Yes
B. No
Question

Is this a valid rep?

A. Yes
B. No
Question

Is this a valid rep?

A. Yes
B. No
C. We are groot
Question

Is this a valid rep?

A. Yes
B. No
Path length

• Recall invariants:
 – No red node has a red child
 – Every path from the root to a leaf has the same number of black nodes

• Together imply: length of longest path is at most twice length of shortest path
 – e.g., B-R-B-R-B-R-B vs. B-B-B-B
Red-black implementation

module RbSet = struct
 type color = Red | Blk
 type 'a t =
 | Leaf
 | Node of (color * 'a t * 'a * 'a t)
let empty = Leaf
let rec mem x = function
 | Leaf -> false
 | Node (_, l, v, r) ->
 if x < v then mem x l
 else if x > v then mem x r
 else true

Same as BST except for color
Red-black insert algorithm

• Use same algorithm as BST to find place to insert
• Color inserted node Red
• Now RB invariant might be violated (Red-Red)
• Recurse back up through tree, restoring invariant at each level with a rotation that balances subtree
 – 4 possible rotations
 – corresponding to 4 ways a black node could have a red child with red grandchild
• Finally color root Black
Red-black insert

```ocaml
let rec insert' x = function
  | Leaf -> Node(Red, Leaf, x, Leaf)
  | Node (col, l, v, r) ->
    if x < v
    then balance (col, (insert' x l), v, r)
    else if x > v
    then balance (col, l, v, (insert' x r))
    else Node (col, l, x, r)

let insert x s =
  match insert' x s with
  | Node (_, l, v, r) -> Node(Blk, l, v, r)
  | Leaf -> failwith "impossible"
```

- **Color new node Red**
- **Like BST insert except balance each subtree on way back up**
- **Color root Black**
RB rotate (1 of 4)

rotates to

eliminates y-x violation
but maybe y has a red parent: new violation
keep recursing up tree
RB rotate (2 of 4)

rotates to
RB rotate (3 of 4)

rotates to
RB rotate (4 of 4)

```
<table>
<thead>
<tr>
<th>x</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>y</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>
```

rotates to

```
<table>
<thead>
<tr>
<th>y</th>
<th>x</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>
```
RB balance

let balance = function
 | (Blk, Node (Red, Node (Red, a, x, b), y, c), z, d) (* 1 *)
 | (Blk, Node (Red, a, x, Node (Red, b, y, c)), z, d) (* 2 *)
 | (Blk, a, x, Node (Red, Node (Red, b, y, c), z, d)) (* 4 *)
 | (Blk, a, x, Node (Red, b, y, Node (Red, c, z, d))) (* 3 *)
 -> Node (Red, Node (Blk, a, x, b), y, Node (Blk, c, z, d))
 | t -> Node t
Upcoming events

• [Wed] A2 due
• [10/12] Prelim

This is blissfully balanced.

WE ARE GROOT
Upcoming events

- [Wed] A2 due
- [10/12] Prelim

This is blissfully balanced.

WE ARE 3110
Upcoming events

• [Wed] A2 due
• [10/12] Prelim

This is blissfully balanced.

THIS IS 3110
2-3 TREES
2-3 trees

• [Hopcroft 1970]
John Hopcroft [Gates 426]

Turing Award Winner 1986

For fundamental achievements in the design and analysis of algorithms and data structures

b. 1939
2-3 trees

- [Hopcroft 1970]
- Two kinds of nodes:

![Diagram of 2-3 trees]

- [Diagram showing two types of nodes: one with a single child and another with two children]

- [Diagram showing a node with multiple children, indicating the structure of a 2-3 tree]
2-node

• Node contains one value and has two subtrees
• Obeys the BST invariant:
 – All values in l are less than v
 – All values in r are greater than v
3-node

- Node contains two values and has three subtrees
- Obeys something like the BST invariant:
 - All values in l are less than v_1
 - All values in m are between v_1 and v_2
 - All values in r are greater than v_2
Inserting into 2-3 tree

- Strategy: split nodes as necessary
- Complete algorithm too long to give in slides
- But you will implement it in A3!
Example of inserting into 2-3 tree

Insert 1 into:

Result:
Example of inserting into 2-3 tree

Insert 0 into:

Result: