
CS 3110 Spring 2015
Problem Set 4
Version 2 (last modified April 4, 2016)

Overview

This assignment has two parts. The first part builds upon your implementation of the real
numbers in PS3 and shows how modules and functors are powerful tools to extend an existing
system. The second part introduces a new data structure, a splay tree, which is similar to a
binary search tree but has more interesting properties.

If you consult any written or online sources you need to acknowledge them. Failure to do so
is a violation of academic integrity.

You must write your own code. Code copied from outside sources with proper citation does
not constitute an AI violation, but will receive minimal credit.

No imperative features are allowed throughout this problem set. This assignment must be
done individually.

Objectives

• Be comfortable with using modules and functors to extend an exisisting system.

• Be familiar with a new data structure: splay trees.

• Write formal proofs to reason about your own code.

Recommended reading

The following supplementary materials may be helpful in completing this assignment:

• Lectures 11 12 13 14

• The CS 3110 style guide

• The OCaml tutorial

• Introduction to Objective Caml

• Real World OCaml Chapters 4, 6, 9
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http://www.cs.cornell.edu/courses/cs3110/2016sp/lectures/11/lecture11_3110.pdf
http://www.cs.cornell.edu/courses/cs3110/2016sp/lectures/12/lecture12_3110.pdf
http://www.cs.cornell.edu/courses/cs3110/2016sp/lectures/13/lecture13_3110.pdf
http://www.cs.cornell.edu/courses/cs3110/2016sp/lectures/14/lecture14_3110.pdf
http://www.cs.cornell.edu/courses/cs3110/2016sp/handouts/style.html
http://ocaml.org/learn/tutorials/
http://www.cs.caltech.edu/courses/cs134/cs134b/book.pdf
https://realworldocaml.org/v1/en/html/index.html


What to turn in

Exercises marked [written] should be placed in written.txt or written.pdf and will be graded
by hand. All other exercises should be placed in fields.ml, in geometry.ml, utils.ml, tests.ml,
or in splay.ml and will be graded automatically.

Your files must compile via cs3110 compile <filename>.
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Geometry

In this part of the problem set you will build upon your knowledge of the real numbers in
PS3.

Exercise 1: Revisiting fields.

In PS3 you implemented the real numbers as a field. In this problem set we introduce an
ordered field which is just a field equipped with a compare function cmp with the following
signature:

module type FIELD = sig

type t

val zero : t

val one : t

val add : t -> t -> t

val multiply : t -> t -> t

val negate : t -> t

val inverse : t -> t

val to_string : t -> string

val num_of_big_int : big_int -> t

val num_of_int : int -> t

end

module type OrderedField = sig

include FIELD

type cmp = Less | Greater | Equal

val cmp : t -> t -> cmp

end

In fields.ml we provided the modules R and Q both of which are ordered fields. Note that
R.to_string is unimplemented since this function is for your own testing purposes. We suggest
that you implement it yourself if you find it useful.

TODO: Implement module Floats : OrderedField using float as the number type.

In the next 2 exercises you will build a functor Geometry (F : OrderedField) which deals with
two geometry problems on the 2 dimensional Euclidean plane where coordinates of points
are of type F.t.
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Exercise 2: Convex Hull.

In Euclidean space, a convex set is a region such that for every pair of points within the
region, every point on the straight line segment that joins the pair is also within the region.
Given a set of points X on the 2 dimensional plane the convex hull of the set is smallest
convex set that contains X. There are various efficient algorithms to compute the convex hull
of a set of points. In this exercise you will implement Graham scan which runs in O(n log n)
where n is the number of points.

The algorithm can be described in 3 simple steps:

1. The first step is to find the point with the lowest y-coordinate. If the lowest y-coordinate
exists in more than one point in the set, the point with the lowest x-coordinate out of the
candidates should be chosen. Call this point P = (xP , yP )

2. Sort the set in increasing order of the angle they and the point P make with the x-axis.

In the previous release of this writeup we suggested that you use the cosine function to do
this but this requires taking the norm of a 2 dimensional vector which is not too easy to
implement. In this version we introduce another function that maps a vector to a number
in the interval [−1, 3] which is monotonic with the angle the vector makes with the x-axis.

Definition 1. Given a vector (x, y). Let p = y
|x|+|y| . The pseudoangle it makes with the

x-axis can be computed as:

p((x, y)) =

{
p if x ≥ 0

2− p otherwise.

3. The algorithm proceeds by considering each of the points in the sorted array in sequence.
For each point, it is first determined whether traveling from the two points immediately
preceding this point constitutes making a left turn or a right turn. If a right turn, the
second-to-last point is not part of the convex hull, and lies inside it. The same determi-
nation is then made for the set of the latest point and the two points that immediately
precede the point found to have been inside the hull, and is repeated until a ”left turn”
set is encountered, at which point the algorithm moves on to the next point in the set of
points in the sorted array minus any points that were found to be inside the hull; there
is no need to consider these points again.

Again, determining whether three points constitute a ”left turn” or a ”right turn” does
not require computing the actual angle between the two line segments, and can actually
be achieved with simple arithmetic only as follows.

For three points P1 = (x1, y1), P2 = (x2, y2) and P3 = (x3, y3), simply compute the z-

coordinate of the cross product of the two vectors
−−→
P1P2 and

−−→
P1P3, which is given by the

expression (x2−x1)(y3−y1)−(y2−y1)(x3−x1). If the result is 0, the points are collinear;
if it is positive, the three points constitute a ”left turn” or counter-clockwise orientation,
otherwise a ”right turn” or clockwise orientation (for counter-clockwise numbered points).
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TODO: : Implement the function convex_hull : point list -> point list in geometry.ml

which returns the vertices of the convex hull that contains points in the input list in the
counter-clockwise order.

We have provided some point sets using both modules Q and R in file tests.ml. Write test cases
using these point sets and add a few more tests to make sure all cases are tested for. Recall
that it is impossible to decide equality in R, the set of real numbers. The R.cmp function
provided will terminate if its inputs are distinct numbers but will loop forever otherwise.
For this reason there are 2 cases convex_hull can fail on a point set.

• Points do not have distinct coordinates.

• There are 3 colinear points

In the real-coordinate point sets provided we ensure that these 2 cases do not happen. You
need to keep this in mind while writing your test cases.

Exercise 3: Area of a polygon.

The convex hull in the previous exercise is an example of a convex polygon. In general a
polygon is defined to be the area bounded by straight line segments which form a closed
loop.

A polygon is self-crossing if one edge crosses over another edge of the same polygon. We will
not consider this type of polygon.

Given the vertices of a non-self-crossing polygon, there is a simple algorithm that computes
its area.

Let [(x0, y0), (x1, y1), (x2, y2), . . . , (xn−1, yn−1)] be the vertices in clockwise direction.

Let (xn, yn) = (x0, y0). The area A can be computed using the following formula:

A =

(
n∑

i=1

(xi−1 + xi).(yi−1 − yi)

)
/2

If the list of vertices is in the counter-clockwise direction the result has the same magnitude
as the area but with a negative sign in which case we can take the absolute value of A.

More explantion on the correctness of this algorithm can be found here.

TODO: Implement the function area : point list -> t in geometry.ml that computes the
area of a polygon given a list of vertices in the clockwise or counter-clockwise direction. The
return area must be positive.

Make sure to test your code thoroughly in tests.ml
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http://www.mathopenref.com/coordpolygonarea2.html


Splay Trees

A splay tree is an efficient implementation of a binary search tree that takes advantage
of locality in the keys used in incoming lookup requests. For many applications, there is
excellent key locality. A good example is a network router. A network router receives
network packets at a high rate from incoming connections and must quickly decide on which
outgoing wire to send each packet, based on the IP address in the packet. The router needs
a big table (a map) that can be used to look up an IP address and find out which outgoing
connection to use. If an IP address has been used once, it is likely to be used again, perhaps
many times. Splay trees can provide good performance in this situation.

Importantly, splay trees offer amortized O(log n) performance; a sequence of M operations
on an n-node splay tree takes O(log n) time.

A splay tree is a binary search tree. It has one interesting difference, however: whenever an
element is looked up in the tree, the splay tree reorganizes to move that element to the root
of the tree, without breaking the binary search tree invariant. If the next lookup request
is for the same element, it can be returned immediately. In general, if a small number of
elements are being heavily used, they will tend to be found near the top of the tree and are
thus found quickly.

We have already seen a way to move an element upward in a binary search tree in recitation:
tree rotation. When an element is accessed in a splay tree, tree rotations are used to move
it to the top of the tree. This simple algorithm can result in extremely good performance in
practice.

There are three kinds of tree rotations that are used to move elements upward in the tree.
These rotations have two important effects: they move the node being splayed upward in
the tree, and they also shorten the path to any nodes along the path to the splayed node.
This latter effect means that splaying operations tend to make the tree more balanced.

Rotation 1: Simple rotation

The simple tree rotation used in treaps is also applied at the root of the splay tree, moving
the splayed node x up to become the new tree root. Here we have A < x < B < y < C, and
the splayed node is x in the tree on the left and y in the tree on the right. The splayed node
depends on which direction the rotation is.

y x

/ \ / \

x C <---> A y

/ \ / \

A B B C

Rotation 2: Zig-Zig and Zag-Zag
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"http://www.cs.cornell.edu/Courses/cs312/2004sp/lectures/treaps.html"


Lower down in the tree rotations are performed in pairs so that nodes on the path from the
splayed node to the root move closer to the root on average. In the zig-zig case, the splayed
node is the left child of a left child or the right child of a right child (zag-zag).

z x

/ \ / \

y D A y

/ \ / \

x C <---> B z

/ \ / \

A B C D

Rotation 3: Zig-Zag

In the zig-zag case, the splayed node is the left child of a right child or vice-versa. The
rotations produce a subtree whose height is less than that of the original tree. Thus, this
rotation improves the balance of the tree. In each of the two cases shown, x is the splayed
node:

z x y

/ \ / \ / \

y D / \ A z

/ \ <---> y z <---> / \

A x / \ / \ x D

/ \ A B C D / \

B C B C

See this page for a nice visualization of splay tree rotations and a demonstration that these
rotations tend to make the tree more balanced while also moving frequently accessed elements
to the top of the tree.

The classic version of splay trees is an imperative data structure in which tree rotations
are done by imperatively updating pointers in the nodes. This data structure can only
implement a mutable set/map abstraction because it modifies the tree destructively.

Unlike the classic imperative splay tree, your code should build a new tree upon insertion,
deletion, and lookup. Note: You may not use any imperative features for this
section.

Exercise 4: Splay.

Many of the operations performed on splay trees require splaying. You will first implement
splay - you may find the rotations described above to be useful.
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http://www.cs.nyu.edu/algvis/java/SplayTree.html


TODO: Implement splay as defined splay.mli.

Exercise 5: Lookup.

Remember that when an element has been looked up, it is splayed to the top of the tree. If
the element does not exist in the tree, splay the last non-leaf node reached during lookup.

TODO: Implement lookup as defined in splay.mli.

Exercise 6: Insertion.

Splay trees use the same method as binary search trees to insert nodes with one exception -
after the item is inserted, a splay is performed to move the inserted node to the top of the
tree.

TODO: Implement insert as defined in splay.mli.

Exercise 7: Deletion.

If the removed node is not the root, the parent of the removed node is splayed to the top
of the tree. Additionally, if the element does not exist in the tree, the last non-leaf node
encountered during search is splayed. Otherwise, splay trees use the same method as binary
search trees to delete nodes.

TODO: Implement delete as defined in splay.mli.

Exercise 8: Proving Correctness.

[written] Prove the following:

Given an n-node splay tree t and an element x, insert t x returns a tree t′ that satisfies the
binary search tree invariants. That is, each node in t′ has two distinguished subtrees, and
each node’s value is greater than all the values stored in the left subtree and less than all
the values stored in the right subtree.
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Comments

[written] At the end of the file, please include any comments you have about the problem set,
or about your implementation. This would be a good place to list any problems with your
submission that you weren’t able to fix or to give us general feedback about the problem set.

Release files

The accompanying release file ps4.zip contains the following files:

• writeup.pdf is this file.

• Folder geometry contains files needed in the first part of the problem set.

– fields.mli and fields.ml contain the interface and implementation of 3 different
ordered fields.

– geometry.mli and geometry.ml contain the interface and implementation of the
solution to the 2 geometry problems.

– utils.ml contains some utility functions for the real module. These functions are
handy in implementing test cases in tests.ml

– .ocamlinit and .cs3110 contain configuration options to include the nums package
when running in utop or compiling with cs3110 compile without needing to
specify it explicitly.

• Folder splaytree

– splay.mli and splay.ml contain the interface and implementation of splay trees.
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