
Monads

Today’s music: Vámanos Pal Monte by Eddie Palmieri

Prof. Clarkson
Fall 2016

Review

Currently in 3110: Advanced topics
•  Futures: Async: deferreds, return, bind

Today:
•  Monads

Monad tutorials

source: https://wiki.haskell.org/Monad_tutorials_timeline

since 2011:
another 34 at least

Question

Have you programmed with monads in Haskell?

A.  No
B.  Yes
C.  Yes, and I've written a monad tutorial

Monad tutorials

"A monad is a monoid object in a category of
endofunctors....It might be helpful to see a monad
as a lax functor from a terminal bicategory."

Monad tutorials

"A monad is a monoid object in a category of
endofunctors....It might be helpful to see a monad
as a lax functor from a terminal bicategory."

Monad tutorials

"A monad is a monoid object in a category of
endofunctors....It might be helpful to see a monad as
a lax functor from a terminal bicategory."

"Monads are burritos." [http://chrisdone.com/posts/monads-are-burritos]

Monad
For our purposes: a monad is a signature:

module type Monad = sig
 type 'a t
 val bind : 'a t -> ('a -> 'b t) -> 'b t
 val return : 'a -> 'a t
end

Any structure that implements the Monad signature is a monad.
(Just like any structure that implements the Queue signature is a queue,
etc.)

What's the big deal???

DEBUGGABLE FUNCTIONS

Debuggable functions

Suppose you're implementing two functions:
•  f: int -> int
•  g: int -> int

And you'd like to compute their composition:
let h x = g(f x) (* = x |> f |> g *)

Debuggable functions
But your implementations have bugs, so you'd like to make them
debuggable but without introducing side effects:
•  fd: int -> int * string
•  gd: int -> int * string

(The string records any debugging information you might like)

And you'd like to debug their composition:
let hd x = ???
 (* NOT: x |> fd |> gd *)

Q: Why not?
A: gd takes an int as input not an int * string

Debuggable functions

let hd x =
 let (y,s1) = fd x in
 let (z,s2) = gd y in
 (z,s1^s2)

Critique:
•  Hard to infer from that code that it's doing

composition!
•  Ugly compared to
 let h x = x |> f |> g

Upgrading a function

What if we could upgrade a debuggable function to
accept the input from another debuggable
function?

upgrade gd
: int*string -> int*string

How would you implement upgrade?

Upgrading a function

let upgrade f (x,s1) =
 let (y,s2) = f x in
 (y,s1^s2)

let hd x = x |> fd |> upgrade gd

Nice separation of concerns!
•  upgrade handles the "plumbing" with the strings
•  the definition of hd is clearly about composition

Another kind of upgrade

•  Suppose we have a function e : int -> int
that we want to include in a debuggable pipeline of
functions, but we're not interested in debugging e
itself
– won't typecheck:
x |> fd |> e |> upgrade gd

– won't typecheck:
x |> fd |> upgrade e |> upgrade gd

•  We need a way to "lift" a function
from int -> int
to int -> int*string

Another kind of upgrade

That's easy:
let trivial x = (x, "")  
let lift f x = x |> f |> trivial

Now we can write:
 x |> fd
 |> upgrade (lift e)
 |> upgrade gd

Upgrades

Consider the types of two of our upgrading functions:

val upgrade :
 (int -> int * string)
 -> (int * string -> int * string)

val trivial :
 int -> (int * string)

Upgrades
Another way of writing those types:

type 'a t = 'a * string

val upgrade :
 (int -> int t)
 -> (int t -> int t)

val trivial :
 int -> int t

Have you seen those types before???

Rewriting types

type 'a t = 'a * string

let upgrade' m f = upgrade f m
val upgrade' :
 int t
 -> (int -> int t)
 -> int t

val trivial :
 int -> int t

module type Monad = sig
 type 'a t
 val bind :
 'a t
 -> ('a -> 'b t)
 -> 'b t
 val return :
 'a -> 'a t
end

Rewriting types

type 'a t = 'a * string

val bind :
 int t
 -> (int -> int t)
 -> int t

val return :
 int -> int t

module type Monad = sig
 type 'a t
 val bind :
 'a t
 -> ('a -> 'b t)
 -> 'b t
 val return :
 'a -> 'a t
end

Debuggable is a monad

module Debuggable : Monad = struct
 type 'a t = 'a * string
 let bind (x,s1) f =
 let (y,s2) = f x in
 (y,s1^s2)
 let return x = (x,"")
end

Stepping back...

•  We took functions
•  We made them compute something more
– A debug string

•  We invented ways to pipeline them together
– upgrade, trivial

•  We discovered those ways correspond to the
Monad signature

FUNCTIONS THAT PRODUCE
ERRORS

Functions and errors

•  You implemented an interpreter
– The type for values contains VError
– Because sometimes eval would get stuck and be

unable to produce a value, e.g., eval "1/0"
•  A partial function (in math) is undefined for

some inputs
– e.g., max_list : int list -> int
– what should it do for empty list?
– could produce an error instead of an exception...

A type for possible errors

type 'a t = Val of 'a | Err

let div (x:int) (y:int) =
 if y=0 then Err
 else Val (x / y)

let neg (x:int) = Val (-x)

Error handling
Lifting those function to handle inputs that might be errors...

let neg = function
 | Err -> Err
 | Val x -> Val (-x)

let div x y =
 match (x,y) with
 | (Err,_) | (_,Err) -> Err
 | (Val a,Val b) -> if b=0 then Err else Val (a/b)

And any other functions you write have to pattern match to handle errors...
Could we get rid of all that boilerplate pattern matching?

Eliminating boilerplate matching

(* [rev_app_err m f] applies f
 * to m, handling Err as
 * necessary. *)
let rev_app_err m f =
 match m with
 | Val x -> f x
 | Err -> Err

let (|>?) = rev_app_err

Eliminating boilerplate matching

let neg = function
 | Err -> Err
 | Val x -> Val (-x)

let neg x =
 x |>? fun a ->
 Val (-a)

Eliminating boilerplate matching

let div x y =
 match (x,y) with
 | (Err,_) | (_,Err) -> Err
 | (Val a,Val b) ->
 if b=0 then Err else Val (a/b)

let div x y =
 x |>? fun a ->
 y |>? fun b ->
 if b=0 then Err else Val (a/b)

Another way to write that code

let value x = Val x

let neg x =
 x |>? fun a ->
 value (-a)

let div x y =
 x |>? fun a ->
 y |>? fun b ->
 if b=0 then Err else value (a/b)

What are the types?

type 'a t = Val of 'a | Err
val value : 'a -> 'a t
val (|>?) : 'a t -> ('a -> 'b t) -> 'b t

Have you seen those types before???

module type Monad = sig
 type 'a t
 val bind :
 'a t
 -> ('a -> 'b t)
 -> 'b t
 val return :
 'a -> 'a t
end

Error is a monad

module Error : Monad = struct
 type 'a t = Val of 'a | Err
 let return x = Val x
 let bind m f =
 match m with
 | Val x -> f x
 | Err -> Err
end

Option is a monad

module Option : Monad = struct
 type 'a t = Some of 'a | None
 let return x = Some x
 let bind m f =
 match m with
 | Some x -> f x
 | None -> None
end

Stepping back...

•  We took functions
•  We made them compute something more
– A value or possibly an error

•  We invented ways to pipeline them together
– value, (|>?)

•  We discovered those ways correspond to the
Monad signature

ASYNC

Deferred is a monad

module Deferred : sig
 type 'a t
 val return : 'a -> 'a t
 val bind : 'a t -> ('a -> 'b t) -> 'b t
end

•  return takes a value and returns an immediately determined
deferred

•  bind takes a deferred, and a function from a non-deferred to a
deferred, and returns a deferred that result from applying the
function

Stepping back...

•  We took functions
•  The Async library made them compute

something more
– a deferred result

•  The Async library invented ways to pipeline them
together
– return, (>>=)

•  Those ways correspond to the Monad signature
•  So we call Async a monadic concurrency library

Another view of Monad
module type Monad = sig
 (* a "boxed" value of type 'a *)
 type 'a t

 (* [m >>= f] unboxes m,
 * passes the result to f,
 * which computes a new result,
 * and returns the boxed new result *)
 val (>>=) : 'a t -> ('a -> 'b t) -> 'b t

 (* box up a value *)
 val return : 'a -> 'a t
end

(equate "box" with "tortilla" and you have the burrito metaphor)

SO WHAT IS A MONAD?

Computations

•  A function maps an input to an output
•  A computation does that and more: it has some effect
–  Debuggable computation: effect is a string produced for

examination
–  Error computation: effect is a possible error instead of a value
–  Option computation: effect is a possible None instead of a

value
–  Deferred computation: effect is delaying production of value

until scheduler makes it happen
•  A monad is a data type for computations
–  return has the trivial effect
–  (>>=) does the "plumbing" between effects

Phil Wadler

b. 1956

•  A designer of Haskell
•  Wrote the paper* on

using monads for
functional programming

* http://homepages.inf.ed.ac.uk/wadler/papers/marktoberdorf/baastad.pdf

Other monads

•  State: modifying the state is an effect
•  List: producing a list of values instead of a single

value can be seen as an effect
•  Random: producing a random value can be seen

as an effect

•  ...

Monad laws

•  Every data type obeys some algebraic laws
–  e.g., for stacks, peek (push x s) = x
– We don't write them in OCaml types, but they're

essential for expected behavior
•  Monads must obey these laws:

1.   return x >>= f is equivalent to f x
2.   m >>= return is equivalent to m
3.   (m >>= f) >>= g is equivalent to m >>= (fun

x -> f x >>= g)
•  Why? The laws make sequencing of effects work the

way you expect

Monad laws
1.   return x >>= f is equivalent to f x

Doing the trivial effect then doing a computation f is the same as just doing the
computation f
(return is left identity of bind)

2.   m >>= return is equivalent to m
Doing only a trivial effect is the same as not doing any effect
(return is right identity of bind)

3.   (m >>= f) >>= g is equivalent to
 m >>= (fun x -> f x >>= g)

Doing f then doing g as two separate computations is the same as doing a single computation which is
f followed by g
(bind is associative)

Upcoming events

•  [Wednesday pm] Whole-class prelim 2 review session,
time and place TBA but sometime between 7 and 11
pm

•  [Wednesday] Recitations are prelim reviews
•  [Thursday am] Lecture canceled
•  [Thursday pm] Prelim 2 Part 1
•  [Thursday 9:30 pm – Saturday 9:30 pm] Prelim 2 Part 2

This is effectful.

THIS IS 3110

