
Specifications

Today’s music: Nice to know you by Incubus

Prof. Clarkson
Fall 2016

Review

Previously in 3110:
•  Behavioral equivalence
•  Proofs of correctness by induction on naturals,

lists, trees, ...

Today:
•  Verify that a function implementation satisfies its

specification

Specification vs. Implementation

Specification ("spec"):

(* [max x y] is the maximum of [x] and [y]. *)
val max : int -> int -> int

Implementation:

let max x y = if x>=y then x else y

Specifications

(* postcondition: ...
 precondition : ... *)
val f: t1 -> t2

•  Postcondition: guaranteed to be true of value returned by
function

•  Precondition: must be true of value passed to function as
argument
–  in which case function must not diverge nor raise exception
–  hence if precondition holds, function is guaranteed to

evaluate to a value

Specifications

Choices of how to write specification
comment for max's precondition:

•  omit
•  precondition: none.
•  requires: nothing.
•  assumes: nothing.
•  ...

Specifications

Choices of how to write specification
comment for max's postcondition:

•  [max x y] is the maximum of [x] and [y].
•  postcondition: [max x y] is the maximum of [x] and

[y].
•  returns: [max x y] is the maximum of [x] and [y].
•  ensures: [max x y] is the maximum of [x] and [y].
•  ...

Verification

•  Verification: prove that implementation satisfies
specification

•  Proof gets to assume precondition
•  Proof has to establish that postcondition holds
– Might use behavioral equivalence

– Might use structural induction
–  ...

Question

Which of the following defines "maximum"?
A.  (max x y) >= x and (max x y) >= y
B.  (max x y) = x or (max x y) = y
C.  The conjunction of A and B
D.  None of the above

Question

Which of the following defines "maximum"?
A.  (max x y) >= x and (max x y) >= y
B.  (max x y) = x or (max x y) = y
C. The conjunction of A and B
D.  None of the above

Verification of max
(* returns: max x y is the maximum of x and y.
 * that is:
 * (max x y) >= x
 * and
 * (max x y) >= y
 * and
 * (max x y = x) or (max x y = y). *)
val max : int -> int -> int
let max x y = if x>=y then x else y

Let's give a proof that max satisfies its
specification...

Verification of max

Theorem:
(max x y) >= x and (max x y) >= y
 and (max x y = x) or (max x y = y)

Proof: by case analysis

Case: x >= y
 Note that max x y ~ x,
 because max x y -->* x when x >= y.
 Substituting x for (max x y) in the theorem,
 we have x >= x and x >= y and (x=x or x=y).
 By math and the assumption that x >= y,
 that holds.

let max x y = if x>=y then x else y

Verification of max

Theorem:
(max x y) >= x and (max x y) >= y
 and (max x y = x) or (max x y = y)

Proof: by case analysis

Case: x < y
 Note that max x y ~ y,
 because max x y -->* y when x < y.
 Substituting y for (max x y) in the theorem,
 we have y >=x and y >= y and (y=x or y=y).
 By math and the assumption that x < y,
 that holds.

let max x y = if x>=y then x else y

Verification of max

Theorem:
(max x y) >= x and (max x y) >= y
 and (max x y = x) or (max x y = y)

Proof: by case analysis

Case: x >= y
 ...
Case: x < y
 ...

Those two cases are exhaustive.

QED

let max x y = if x>=y then x else y

Another implementation of max
(* (max' x y) >= x and (max' x y) >= y
 and (max' x y = x) or (max' x y = y) *)
let max' x y = (abs(y-x)+x+y)/2

(* returns: abs x is x if x>=0, otherwise -x *)
val abs : int -> int

Modular verification: use only the specs of other functions,
not their implementations

But if we don't have code, can't use ~ and eval...
(in this case we could appeal to math, but we won't)

Instead use specification!

Specification structure

(* postcondition: f x is z where R(z,x)
 precondition : Q(x) *)
val f: t1 -> t2

e.g.
(* returns: abs x is z where z=x if x>=0,
 otherwise z=-x *)
val abs : int -> int

R(z,x) = (z=x or z=-x) and z>=0
Q(x) = true

Using specifications in proofs

(* postcondition: f x is z where R(z,x)
 precondition : Q(x) *)
val f: t1 -> t2

New axiom: specification

if Q(x) then there exists z such that
 f x ~ z and R(z,x)

This axiom introduces an assumption about f: now someone is
obligated to verify f!

Verification of max'

Theorem:
(max' x y) >= x and (max' x y) >= y
 and (max' x y = x) or (max' x y = y)

Proof: by case analysis

Case: y-x >= 0 equiv. y >= x
 Note that abs(y-x) ~ y-x by specification
 and by assumption that y >= x.
 So max' x y ~ (y-x + x + y)/2 ~ (y+y)/2 ~ y.
 Substituting y for (max' x y) in the theorem,
 we have y >= x and y >= y and (y=x or y=y).
 By math and the assumption that y >= x,
 that holds.

let max' x y = (abs(y-x)+x+y)/2

Verification of max'

Theorem:
(max' x y) >= x and (max' x y) >= y
 and (max' x y = x) or (max' x y = y)

Proof: by case analysis

Case: y-x < 0 equiv. y < x
 Note that abs(y-x) ~ x-y by specification, math,
 and by assumption that y < x.
 So max' x y ~ (x-y + x + y)/2 ~ (x+x)/2 ~ x.
 Substituting x for (max' x y) in the theorem,
 we have x >= x and x >= y and (x=x or x=y).
 By math and the assumption that y < x,
 that holds.

let max' x y = (abs(y-x)+x+y)/2

Verification of max'

Theorem:
(max' x y) >= x and (max' x y) >= y
 and (max' x y = x) or (max' x y = y)

Proof: by case analysis

Case: y-x >= 0
 ...
Case: y-x < 0
 ...

Those two cases are exhaustive.

QED

let max' x y = (abs(y-x)+x+y)/2

Verification of max'
max' max_int 0;;
- : int = -1

(abs(0-max_int)+max_int+0)/2
=
(abs(-max_int)+max_int)/2
=
(max_int+max_int)/2
=
-2/2
=
-1

Question

What went wrong?
A.  There's a bug in our proof
B.  There's a bug in our specification of max
C.  There's a bug in our specification of abs
D.  There's a bug in our implementation
E.  Something else

Question

What went wrong?
A.  There's a bug in our proof
B.  There's a bug in our specification of max
C.  There's a bug in our specification of abs
D.  There's a bug in our implementation
E.  Something else (mainly this)

 We agreed to ignore the limits of machine
 arithmetic...

Machine arithmetic
Let ++ and -- denote the "ideal" math operators

(* [x + y] is x ++ y.
 * requires: min_int <= x ++ y <= max_int *)
val (+) : int -> int -> int

(* [x - y] is x -- y.
 * requires: min_int <= x -- y <= max_int *)
val (-) : int -> int -> int

•  in counterexample, we attempt to compute max_int+max_int
•  so our implementation of max' doesn't guarantee those preconditions

hold when it calls (+) and (-)
•  we could add a precondition to max' to rule out that behavior...

Corrected spec for max'

(* returns: a value z s.t.
 * z>=x and z>=y and (z=x or z=y)
 * requires: min_int/2 <= x <= max_int/2
 * and min_int/2 <= y <= max_int/2 *)
let max' x y = (abs(y-x)+x+y)/2

Theorem:
if min_int/2 <= x <= max_int/2
 and min_int/2 <= y <= max_int/2
then max' x y >= x and max' x y >= y
 and (max' x y = x or max' x y = y)

Proof: omitted. QED

Verified max' vs max

(* returns: a value z s.t.
 * z>=x and z>=y and (z=x or z=y)
 * requires: min_int/2 <= x <= max_int/2
 * and min_int/2 <= y <= max_int/2 *)
let max' x y = (abs(y-x)+x+y)/2

(* returns: a value z s.t.
 * z>=x and z>=y and (z=x or z=y) *)
let max x y = if x>=y then x else y

max' assumes more about its input than max does

...max' has a stronger precondition

Strength of preconditions

Given two preconditions PRE1 and PRE2 such that
PRE1 ⇒ PRE2 and PRE1 ≢ PRE2
–  e.g., x>1 ⇒ x>0
–  PRE1 is stronger than PRE2:

•  assumes more
•  function can be called under fewer circumstances

–  PRE2 is weaker than PRE1:
•  assumes less
•  function can be called under more circumstances

– The weakest possible precondition is to assume nothing, but
that might make implementation difficult

– The strongest possible precondition is to assume so much that
the function can never be called

Verified max' vs max
(* returns: a value z s.t.
 * z>=x and z>=y and (z=x or z=y)
 * requires: min_int/2 <= x <= max_int/2
 * and min_int/2 <= y <= max_int/2 *)
let max' x y = (abs(y-x)+x+y)/2

(* returns: a value z s.t.
 * z>=x and z>=y and (z=x or z=y) *)
let max x y = if x>=y then x else y

max' assumes more about its input than max does
...max' has a stronger precondition
...max' can be called under fewer circumstances; maybe less useful to clients

Strength of postconditions

Given two postconditions POST1 and POST2 such
that POST1 ⇒ POST2 and POST1 ≢ POST2
–  e.g., returns a stably-sorted list ⇒ returns a sorted list
–  POST1 is stronger than POST2:

•  promises more
•  function result can be used under more circumstances

–  POST2 is weaker than POST1:
•  promises less
•  function result can be used under fewer circumstances

– The weakest possible postcondition is to promise nothing
– The strongest possible postcondition is to promise so

much that the function could never be implemented

Question

Which is the stronger postcondition for find?

A: (* returns: find lst x is an index
 * at which x is found in lst
 * requires: x is in lst *)

B: (* returns: find lst x is the first index
 * at which x is found in lst
 * requires: x is in lst *)

val find: 'a list -> 'a -> int

Question

Which is the stronger postcondition for find?

A: (* returns: find lst x is an index
 * at which x is found in lst
 * requires: x is in lst *)

B: (* returns: find lst x is the first index
 * at which x is found in lst
 * requires: x is in lst *)

val find: 'a list -> 'a -> int

Satisfaction of specs

•  Suppose a client gives us a spec to implement.

•  Could we implement a function that meets a

different spec, verify that implementation against
that other spec, and still make the client happy?

•  Analogy: In Java, if you're asked to implement a
function that returns a List, could you instead return
–  an Object?
–  an ArrayList?

Satisfaction of specs

•  If a client asked for A, could we give them B?
•  If a client asked for B, could we give them A?

A: (* returns: find lst x is an index
 * at which x is found in lst
 * requires: x is in lst *)

B: (* returns: find lst x is the first index
 * at which x is found in lst
 * requires: x is in lst *)

Satisfaction of specs

•  If a client asked for A, could we give them B? Yes.
•  If a client asked for B, could we give them A? No.

A: (* returns: find lst x is an index
 * at which x is found in lst
 * requires: x is in lst *)

B: (* returns: find lst x is the first index
 * at which x is found in lst
 * requires: x is in lst *)

Satisfaction of specs

•  If a client asked for C, could we give them D?
•  If a client asked for D, could we give them C?

C: (* returns: a value z s.t.
 * z>=x and z>=y and (z=x or z=y)
 * requires: min_int/2 <= x <= max_int/2
 * and min_int/2 <= y <= max_int/2 *)

D: (* returns: a value z s.t.
 * z>=x and z>=y and (z=x or z=y) *)

Satisfaction of specs

•  If a client asked for C, could we give them D? Yes.
•  If a client asked for D, could we give them C? No.

C: (* returns: a value z s.t.
 * z>=x and z>=y and (z=x or z=y)
 * requires: min_int/2 <= x <= max_int/2
 * and min_int/2 <= y <= max_int/2 *)

D: (* returns: a value z s.t.
 * z>=x and z>=y and (z=x or z=y) *)

Question

Suppose a client gives us a spec to implement:
 requires: PRE
 returns: POST

Which of the following could we instead implement and still
satisfy the client?

A.  Weaker PRE and weaker POST
B.  Weaker PRE and stronger POST
C.  Stronger PRE and weaker POST
D.  Stronger PRE and stronger POST
E.  None of the above

Question

Suppose a client gives us a spec to implement:
 requires: PRE
 returns: POST

Which of the following could we instead implement and still
satisfy the client?

A.  Weaker PRE and weaker POST
B.  Weaker PRE and stronger POST

i.e., assume less and promise more
C.  Stronger PRE and weaker POST
D.  Stronger PRE and stronger POST
E.  None of the above

Refinement

Specification B refines specification A if any
implementation of B is also an implementation of A
•  Any implementation of "find first" is an implementation

of "find any", so "find first" refines "find any"
•  Any implementation of "max" is an implementation of

"max of small ints", so "max" refines "max of small ints"

Q: How can we verify that SPEC2 refines SPEC1?
A: Prove that PRE1 ⇒ PRE2 and POST2 ⇒ POST1
–  PRE2 is weaker than or equivalent to PRE1
–  POST2 is stronger than or equivalent to POST1

Refinement

Specification pre post
input output

Refinement

Specification

Implementation

pre post

pre post

input output

Refinement

Implementation

pre post

pre post

input output

any input
satisfying
spec's pre.
must also
satisfy impl's

any output
satisfying
impl's post.
must also
satisfy spec's

Refinement and assignments

•  We give you a SPEC1 for an assignment
•  You refine that to a new SPEC2

–  Weaken the precondition or strengthen the postcondition
•  You submit an implementation of SPEC2
•  By the definition of refinement, any implementation of SPEC2

is an implementation of SPEC1
–  so you are J

•  But if you incorrectly refine the spec
–  maybe assume more: strengthen the precondition
–  or guarantee less: weaken the postcondition
–  then you don't pass our test cases
–  so you are L

Refinement and assignments
•  We give you a SPEC1 for an assignment
•  You implement that

–  You are J
•  We post a refined SPEC2 on Piazza.

–  Weakens precondition or strengthens postcondition
•  An implementation of SPEC1 is not necessarily an implementation of

SPEC2!
–  You have to do some reimplementation
–  You are L

•  In the real world, clients are going to refine specs on you all the time
•  But we try not to make your life harder than necessary

–  Which is why one of my commandments to TAs is "Don't refine the spec."
–  And why whenever possible I tell you, "This is unspecified; do something

reasonable."

Proof

•  We worked only somewhat formally today
– Wrote formulas involving and, or, implies
– How do we know we got it right?

•  Formal verification: checked by machine
– Maybe machine generates the proof
– Maybe machine only checks the proof

•  For that, we need formal logic (see CS 4860) and
proof assistants and maybe special purpose logics
for reasoning about programs (see CS 4110)

Upcoming events

•  [Wednesday] MS1 due, no late submissions
•  [Thursday-next Thursday] Design review

meetings
•  [next Thursday] Prelim 2; see Piazza post

This is specified.

THIS IS 3110

