

Type Inference

Prof. Clarkson Fall 2016

Today's music: Cool, Calm, and Collected by The Rolling Stones

Review

Previously in 3110:

- Interpreters: ASTs, evaluation, parsing
- Formal syntax
- Formal semantics
 - Small-step
 - Big-step

Today:

• Type inference

Kinds of typing

- Static: type checking done by analysis of program
 - Compiler/interpreter verifies that type errors cannot occur
 - e.g., C, C++, F#, Haskell, Java, OCaml
- **Dynamic**: type checking done by run-time
 - Run-time detects type errors and report them. Usually requires keeping extra *tag* information for each value in memory.
 - e.g., JavaScript, LISP, Matlab, PHP, Python, Ruby
- Can be a spectrum, e.g., **instanceof** in Java: some checking done at compile time, rest of checking done at run time

Kinds of typing

- Strong: type of a value is independent of how it's used
 Can't pass a string where an int expected, etc.
 - e.g., OCaml, Haskell, Python, Java, Ruby
- Weak: type of value is dependent on how it's used
 - If a string is used where an int expected, it gets converted automatically or by type cast to an int
 - e.g., C, C++, Perl
- Can be a spectrum
 - e.g., Java + operator converts objects to strings
- Troll alert: strong vs. weak is debated a lot; probably not helpful to degenerate into such debates

Typing quadrant

	Weak	Strong
Static	C, C++	OCaml, Java, Haskell
Dynamic	Perl, Assembly	Ruby, Python, Scheme

Kinds of typing

- Manifest: type information supplied in source code
 e.g., C, C++, Java
- Implicit: type information not supplied in source code
 - Implementation 1: Dynamic typing
 - e.g., LISP, Python, Ruby, PHP
 - Implementation 2: Type inference
 - e.g., Haskell, OCaml
 - Tradeoff: ease of implementation vs. run-time performance
- Can be a spectrum
 - e.g., no reasonable language requires you to write to provide the type of 5 in x:int = 5

Type inference

- Goal is to reconstruct types of expressions based on known types of some symbols that occur in expressions
 - Type checkers have to do some of this anyway
 - Difference between inference and checking is really a matter of degree
- Best known in functional languages
 - Especially useful in managing the types of higher-order functions
 - But starting to appear in mainstream languages, e.g., C++11:
 - **auto x = e;** declares variable **x**, initialized with expression **e**, and type of **x** is automatically inferred
 - **decltype(e)** is a type that means "whatever type **e** has"
- Invented by Robin Milner for SML (though other people also deserve credit; see the notes)

Robin Milner

1934-2010

Awarded 1991 Turing Award for "...ML, the first language to include polymorphic type inference and a typesafe exception handling mechanism..."

Is type inference hard?

- The algorithm used in ML is quite clever yet relatively easy to implement
- Difficulty of doing type inference for any particular language is often hard to determine
- Designing type inference for a particular language can be quite hard; must balance
 - expressivity of type system with
 - possibility of inferring all types without requiring annotations

HM type inference

- Algorithm used in OCaml is called HM

 Hindley & Milner invented it independently
- Guarantees of HM:
 - It never makes mistakes. HM will never infer types that cause a program to fail to type check.
 - It never fails. HM will never reject a program that could have been type-checked if programmer had written down all the types.
 - (true of *nearly* all the language; over time some features have been added for which it's not true; see RWO for examples)

HM type inference

- Determine types of definitions in order
 - Use types of earlier definitions to infer later
 - (which is one reason why you can't use later definitions in file)
- For each definition:
 - collect constraints on types
 - solve constraints to determine type

let g x = 5 + x

Desugar: let g = fun x -> ((+) 5) x

let g = fun x -> ((+) 5) x

Step 1: Assign preliminary types to all subexpressions

Subexpression	Preliminary type
fun x -> ((+) 5) x	

let g = fun x -> ((+) 5) x

Step 1: Assign preliminary types to all subexpressions

Sube	xpr	essi	on			Preliminary type
fun	x	->	((+)	5)	x	
	x					
			((+)	5)	x	
			(+)	5		
			(+)			
				5		
					x	

let g = fun x -> ((+) 5) x

Step 1: Assign preliminary types to all subexpressions

Sube	xpr	essio	on			Preliminary type
fun	x	->	((+)	5)	x	
	x					
			((+)	5)	x	
			(+)	5		
			(+)			<pre>int -> int -> int</pre>
				5		int
					x	

let g = fun x -> ((+) 5) x

Step 1: Assign preliminary types to all subexpressions

Subexpression	Preliminary type
fun x -> ((+) 5) x	R
x	U
((+) 5) x	S
(+) 5	Т
(+)	<pre>int -> int -> int</pre>
5	int
x	V

R,*S*,*T*,*U*,*V* are preliminary type variables used during inference

Subexpression	Preliminary type	
fun x -> ((+) 5) x	R	fun · R
x	U	Juli K
((+) 5) x	S	x:U apply:S
(+) 5	Т	apply · T x : V
(+)	<pre>int -> int -> int</pre>	
5	int	(+) 5:int
x	V	:1nt->1nt->1nt

Did we really need to give \mathbf{x} two different preliminary type variables?

A. Yes B. No

Did we really need to give \mathbf{x} two different preliminary type variables?

A. YesB. No

let g = fun x -> ((+) 5) x

Step 2: Collect constraints

let g = fun x -> ((+) 5) x

Step 2: Collect constraints

Subexpression	Preliminary type
fun x -> ((+) 5) x	R
x	U
((+) 5) x	S

Constraint from function: R = U -> S

let g = fun x -> ((+) 5) x

Step 2: Collect constraints

Subexpression		Preliminary type
x		U
	x	V

Constraint from variable usage: U = V

let g = fun x -> ((+) 5) x

Step 2: Collect constraints

Subexpression	Preliminary type
((+) 5) x	S
x	V
(+) 5	Т

Constraint from application: T = V -> S

let g = fun x -> ((+) 5) x

Step 2: Collect constraints

Subexpression	Preliminary type
(+) 5	Т
(+)	<pre>int -> int -> int</pre>
5	int

Constraint from application: int -> int -> int = int -> T

let g = fun x -> ((+) 5) x

Step 2: Collect constraints

let g = fun x -> ((+) 5) x

let g = fun x -> ((+) 5) x

```
U = V
R = U->S
T = V->S
int -> int -> int = int -> T
```

let g = fun x -> ((+) 5) x

$$R = U -> S$$
$$T = U -> S$$
int -> int -> int = int -> T

let g = fun x -> ((+) 5) x

$$R = U -> S$$

$$T = U -> S$$
int -> int -> int = int -> T

let g = fun x -> ((+) 5) x

let g = fun x -> ((+) 5) x

$$R = U -> S$$
int -> int -> int -> U -> S

let g = fun x -> ((+) 5) x

Step 3: Solve constraints

R = int -> int

let g = fun x -> ((+) 5) x

Step 3: Solve constraints

R = int -> int

Done: type of g is int -> int

Algorithm for constraint collection

- Input: an expression e
 - Assume that every anonymous function in e has a different variable name as its argument
 - Easy to ensure that holds, thanks to lexical scope: rename arguments as necessary
- **Output:** a set of constraints

- Intuition: assign a unique type variable (e.g., R, S, T, ...),
 - one to each argument ${f x}$ of a function in ${f e}$
 - one to every subexpression $\mathbf{e'}$ in \mathbf{e}
 - like how we decorated (aka annotated) AST in example
- Formally: define two functions that return type variables:
 - D: *definition* of an argument
 - U: *use* of a subexpression
 - D(**x**) returns the type variable assigned to argument **x**
 - U(${\bf e}^{\, \prime}$) returns the type variable assigned to subexpression ${\bf e}^{\, \prime}$

Example:

- Input: fun x -> (fun y -> x)
- Define two functions for type variables:
 - $-D(\mathbf{x}) = R$ $-D(\mathbf{y}) = S$ $-U(\mathbf{fun \ x} \rightarrow (\mathbf{fun \ y} \rightarrow \mathbf{x})) = T$ $-U(\mathbf{fun \ y} \rightarrow \mathbf{x}) = X$ $-U(\mathbf{x}) = Y$

Constraints that are collected (intuition):

- For each kind of expression (application, anonymous function, let, etc.), collect a set of equations that must hold for that kind of expression
 - e.g., the type of entire anonymous function must equal type of its argument *arrow* type of its body
 - which is what we did in example earlier

Constraints that are collected (formally):

- At a variable usage x:
 U(x) = D(x)
- At a function application e1 e2:
 U(e1) = U(e2) -> U(e1 e2)
- At an anonymous function **fun x** -> **e**:
- $U(fun x \rightarrow e) = D(x) \rightarrow U(e)$
- At a let expression let x = e1 in e2: U(let x = e1 in e2) = U(e2) and D(x) = U(e1)
- etc.
- Unioned with constraints collected at each subexpression
- Note how these are essentially the static semantics!

Return those constraints as output of algorithm

Example (continued):

- Input: fun x -> (fun y -> x)
- x occurs as subexpression, so generate constraint U(x) = D(x)
 Already have U(x) = Y and D(x) = R
 - So constraint is Y = R
- fun y -> ux occurs as subexpression, so generate constraint U(fun y -> x) = D(y) -> U(x)
 - Already have $U(\mathbf{x}) = Y$, and $U(\mathbf{fun } \mathbf{y} \rightarrow \mathbf{x}) = X$, and $D(\mathbf{y}) = S$

- So constraint is $X = S \rightarrow Y$

fun x -> (fun y -> x) occurs as subexpression, so generate constraint U(fun x -> (fun y -> x)) = D(x) -> U(fun y -> x)

- Resulting constraint is $T = R \rightarrow X$

Solving constraints

- After collection, have a set of constraints

 Really a set of equations
- Need to solve those equations for type of main expression of interest
- Unification algorithm [Robinson 1965]
 - roughly like Gaussian elimination to solve system of matrix equations in linear algebra
 - see notes for the algorithm

Upcoming events

• nothing this week

This is cool, calm, and collected.

THIS IS 3110