
Type Inference

Today’s music: Cool, Calm, and Collected by The Rolling Stones

Prof. Clarkson
Fall 2016

Review

Previously in 3110:
•  Interpreters: ASTs, evaluation, parsing
•  Formal syntax
•  Formal semantics
–  Small-step
–  Big-step

Today:
•  Type inference

Kinds of typing

•  Static: type checking done by analysis of program
–  Compiler/interpreter verifies that type errors cannot occur
–  e.g., C, C++, F#, Haskell, Java, OCaml

•  Dynamic: type checking done by run-time
–  Run-time detects type errors and report them. Usually

requires keeping extra tag information for each value in
memory.

–  e.g., JavaScript, LISP, Matlab, PHP, Python, Ruby

•  Can be a spectrum, e.g., instanceof in Java: some
checking done at compile time, rest of checking done at
run time

Kinds of typing

•  Strong: type of a value is independent of how it’s used
–  Can’t pass a string where an int expected, etc.
–  e.g., OCaml, Haskell, Python, Java, Ruby

•  Weak: type of value is dependent on how it’s used
–  If a string is used where an int expected, it gets

converted automatically or by type cast to an int
–  e.g., C, C++, Perl

•  Can be a spectrum
–  e.g., Java + operator converts objects to strings

•  Troll alert: strong vs. weak is debated a lot; probably not
helpful to degenerate into such debates

Typing quadrant

Weak	 Strong	

Sta,c	 C,	C++	 OCaml,	Java,	
Haskell	

Dynamic	 Perl,	Assembly	 Ruby,	Python,	
Scheme	

Kinds of typing

•  Manifest: type information supplied in source code
–  e.g., C, C++, Java

•  Implicit: type information not supplied in source code
–  Implementation 1: Dynamic typing

•  e.g., LISP, Python, Ruby, PHP
–  Implementation 2: Type inference

•  e.g., Haskell, OCaml
–  Tradeoff: ease of implementation vs. run-time

performance
•  Can be a spectrum
–  e.g., no reasonable language requires you to write to

provide the type of 5 in x:int = 5

Type inference

•  Goal is to reconstruct types of expressions based on known
types of some symbols that occur in expressions
–  Type checkers have to do some of this anyway
–  Difference between inference and checking is really a matter of

degree
•  Best known in functional languages

–  Especially useful in managing the types of higher-order functions
–  But starting to appear in mainstream languages, e.g., C++11:

•  auto x = e; declares variable x, initialized with expression e, and
type of x is automatically inferred

•  decltype(e) is a type that means “whatever type e has”

•  Invented by Robin Milner for SML (though other people also
deserve credit; see the notes)

Robin Milner

Awarded 1991 Turing Award for
“…ML, the first language to include
polymorphic type inference and a type-
safe exception handling mechanism…”

1934-2010

Is type inference hard?

•  The algorithm used in ML is quite clever yet
relatively easy to implement

•  Difficulty of doing type inference for any
particular language is often hard to determine

•  Designing type inference for a particular
language can be quite hard; must balance
– expressivity of type system with

– possibility of inferring all types without requiring
annotations

HM type inference

•  Algorithm used in OCaml is called HM
– Hindley & Milner invented it independently

•  Guarantees of HM:
–  It never makes mistakes. HM will never infer types that

cause a program to fail to type check.
–  It never fails. HM will never reject a program that could

have been type-checked if programmer had written
down all the types.
•  (true of nearly all the language; over time some features have

been added for which it's not true; see RWO for examples)

HM type inference

•  Determine types of definitions in order
– Use types of earlier definitions to infer later
–  (which is one reason why you can’t use later

definitions in file)

•  For each definition:
– collect constraints on types

–  solve constraints to determine type

Example

let g x = 5 + x

Desugar:
let g = fun x -> ((+) 5) x

fun

x	

x	

apply

(+)	

apply

5	

Example

let g = fun x -> ((+) 5) x

Step 1: Assign preliminary types to all subexpressions

Subexpression	 Preliminary	type	

fun x -> ((+) 5) x

Example

let g = fun x -> ((+) 5) x

Step 1: Assign preliminary types to all subexpressions

Subexpression	 Preliminary	type	

fun x -> ((+) 5) x

 x

 ((+) 5) x

 (+) 5

 (+)

 5

 x

Example

let g = fun x -> ((+) 5) x

Step 1: Assign preliminary types to all subexpressions

Subexpression	 Preliminary	type	

fun x -> ((+) 5) x

 x

 ((+) 5) x

 (+) 5

 (+) int -> int -> int	

 5 int

 x

Example

let g = fun x -> ((+) 5) x

Step 1: Assign preliminary types to all subexpressions

Subexpression	 Preliminary	type	

fun x -> ((+) 5) x R

 x U

 ((+) 5) x S

 (+) 5 T

 (+) int -> int -> int	

 5 int

 x V

R,S,T,U,V are preliminary type variables used during inference

Example

Subexpression	 Preliminary	type	

fun x -> ((+) 5) x R

 x U

 ((+) 5) x S

 (+) 5 T

 (+) int -> int -> int	

 5 int

 x V

fun : R

x : U

x : V

apply : S

(+)  
:int->int->int

apply : T

5:int	

Question

Did we really need to give x two different
preliminary type variables?

A.  Yes
B.  No

fun : R

x : U

x : V

apply : S

(+)  
:int->int->int

apply : T

5:int	

Question

Did we really need to give x two different
preliminary type variables?

A.  Yes
B.  No

fun : R

x : U

x : V

apply : S

(+)  
:int->int->int

apply : T

5:int	

Example

let g = fun x -> ((+) 5) x

Step 2: Collect constraints

Example

let g = fun x -> ((+) 5) x

Step 2: Collect constraints

Subexpression	 Preliminary	type	

fun x -> ((+) 5) x R

 x U

 ((+) 5) x S

Constraint from function:
R = U -> S

Example

let g = fun x -> ((+) 5) x

Step 2: Collect constraints

Subexpression	 Preliminary	type	

 x U

 x V

Constraint from variable usage:
U = V

Example

let g = fun x -> ((+) 5) x

Step 2: Collect constraints

Subexpression	 Preliminary	type	

 ((+) 5) x S

 x V

 (+) 5 T

Constraint from application:
T = V -> S

Example

let g = fun x -> ((+) 5) x

Step 2: Collect constraints

Subexpression	 Preliminary	type	

 (+) 5 T

 (+) int -> int -> int	

 5 int

Constraint from application:
int -> int -> int = int -> T

Example

let g = fun x -> ((+) 5) x

Step 2: Collect constraints

U = V	
R = U->	S		
T = V->	S	

int -> int -> int	 = int -> T	

Example

let g = fun x -> ((+) 5) x

Step 3: Solve constraints

R = U->	S		
T = U->	S	

int -> int -> int	 = int -> T	

U = V	
R = U->	S		
T = V->	S	

int -> int -> int	 = int -> T	

Example

let g = fun x -> ((+) 5) x

Step 3: Solve constraints

R = U->	S		
T = U->	S	

int -> int -> int	 = int -> T	

U = V	
R = U->	S		
T = V->	S	

int -> int -> int	 = int -> T	

Example

let g = fun x -> ((+) 5) x

Step 3: Solve constraints

R = U->	S		
T = U->	S	

int -> int -> int	 = int -> T	

Example

let g = fun x -> ((+) 5) x

Step 3: Solve constraints

R = U->	S		
T = U->	S	

int -> int -> int	 = int -> T	

Example

let g = fun x -> ((+) 5) x

Step 3: Solve constraints

R = U->	S		
int -> int -> int	 = int -> U ->		S		

Example

let g = fun x -> ((+) 5) x

Step 3: Solve constraints

R = U->	S		
int -> int -> int	 = int -> U ->		S		

Example

let g = fun x -> ((+) 5) x

Step 3: Solve constraints

R = int -> int		

Example

let g = fun x -> ((+) 5) x

Step 3: Solve constraints

R = int -> int		

Done: type of g is int -> int

Algorithm for constraint collection

•  Input: an expression e
– Assume that every anonymous function in e has a

different variable name as its argument

– Easy to ensure that holds, thanks to lexical scope:
rename arguments as necessary

•  Output: a set of constraints

Constraint collection

•  Intuition: assign a unique type variable (e.g., R, S, T, …),
–  one to each argument x of a function in e
–  one to every subexpression e’ in e
–  like how we decorated (aka annotated) AST in example

•  Formally: define two functions that return type variables:
–  D: definition of an argument
–  U: use of a subexpression
–  D(x) returns the type variable assigned to argument x
–  U(e’) returns the type variable assigned to subexpression e’

Constraint collection

Example:
•  Input: fun x -> (fun y -> x)
•  Define two functions for type variables:
– D(x) = R
– D(y) = S
– U(fun x -> (fun y -> x)) = T
– U(fun y -> x) = X
– U(x) = Y

Constraint collection

Constraints that are collected (intuition):
•  For each kind of expression (application,

anonymous function, let, etc.), collect a set of
equations that must hold for that kind of
expression
– e.g., the type of entire anonymous function must

equal type of its argument arrow type of its body
– which is what we did in example earlier

Constraint collection
Constraints that are collected (formally):
•  At a variable usage x:

U(x) = D(x)
•  At a function application e1 e2:

U(e1) = U(e2) -> U(e1 e2)
•  At an anonymous function fun x -> e:
•  U(fun x -> e) = D(x) -> U(e)
•  At a let expression let x = e1 in e2:

U(let x = e1 in e2) = U(e2) and D(x) = U(e1)
•  etc.
•  Unioned with constraints collected at each subexpression
•  Note how these are essentially the static semantics!

Return those constraints as output of algorithm

Constraint collection

Example (continued):
•  Input: fun x -> (fun y -> x)
•  x occurs as subexpression, so generate constraint U(x) = D(x)

–  Already have U(x) = Y and D(x) = R
–  So constraint is Y = R

•  fun y -> ux occurs as subexpression, so generate
constraint U(fun y -> x) = D(y) -> U(x)
–  Already have U(x) = Y, and U(fun y -> x) = X, and D(y) = S
–  So constraint is X = S -> Y

•  fun x -> (fun y -> x) occurs as subexpression, so
generate constraint U(fun x -> (fun y -> x)) =
D(x) -> U(fun y -> x)
–  Resulting constraint is T = R -> X

Solving constraints

•  After collection, have a set of constraints
– Really a set of equations

•  Need to solve those equations for type of main
expression of interest

•  Unification algorithm [Robinson 1965]
–  roughly like Gaussian elimination to solve system of

matrix equations in linear algebra

–  see notes for the algorithm

Upcoming events

•  nothing this week

This is cool, calm, and collected.

THIS IS 3110

