Type Inference

Prof. Clarkson
Fall 2016

Today’s music: Cool, Calm, and Collected by The Rolling Stones
Review

Previously in 3110:
• Interpreters: ASTs, evaluation, parsing
• Formal syntax
• Formal semantics
 – Small-step
 – Big-step

Today:
• Type inference
Kinds of typing

• **Static**: type checking done by analysis of program
 – Compiler/interpreter verifies that type errors cannot occur
 – e.g., C, C++, F#, Haskell, Java, OCaml

• **Dynamic**: type checking done by run-time
 – Run-time detects type errors and report them. Usually requires keeping extra tag information for each value in memory.
 – e.g., JavaScript, LISP, Matlab, PHP, Python, Ruby

• Can be a spectrum, e.g., `instanceof` in Java: some checking done at compile time, rest of checking done at run time
Kinds of typing

- **Strong**: type of a value is independent of how it’s used
 - Can’t pass a `string` where an `int` expected, etc.
 - e.g., OCaml, Haskell, Python, Java, Ruby

- **Weak**: type of value is dependent on how it’s used
 - If a `string` is used where an `int` expected, it gets converted automatically or by type cast to an `int`
 - e.g., C, C++, Perl

- Can be a spectrum
 - e.g., Java `+` operator converts objects to strings

- Troll alert: strong vs. weak is debated a lot; probably not helpful to degenerate into such debates
Typing quadrant

<table>
<thead>
<tr>
<th></th>
<th>Weak</th>
<th>Strong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>C, C++</td>
<td>OCaml, Java, Haskell</td>
</tr>
<tr>
<td>Dynamic</td>
<td>Perl, Assembly</td>
<td>Ruby, Python, Scheme</td>
</tr>
</tbody>
</table>
Kinds of typing

- **Manifest**: type information supplied in source code
 - e.g., C, C++, Java

- **Implicit**: type information not supplied in source code
 - Implementation 1: Dynamic typing
 - e.g., LISP, Python, Ruby, PHP
 - Implementation 2: **Type inference**
 - e.g., Haskell, OCaml
 - Tradeoff: ease of implementation vs. run-time performance

- Can be a spectrum
 - e.g., no reasonable language requires you to write to provide the type of 5 in `x:int = 5`
Type inference

• Goal is to reconstruct types of expressions based on known types of some symbols that occur in expressions
 – Type checkers have to do some of this anyway
 – Difference between inference and checking is really a matter of degree

• Best known in functional languages
 – Especially useful in managing the types of higher-order functions
 – But starting to appear in mainstream languages, e.g., C++11:
 • `auto x = e;` declares variable `x`, initialized with expression `e`, and type of `x` is automatically inferred
 • `decltype(e)` is a type that means “whatever type `e` has”

• Invented by Robin Milner for SML (though other people also deserve credit; see the notes)
Robin Milner

Awarded 1991 Turing Award for “...ML, the first language to include polymorphic type inference and a type-safe exception handling mechanism...”

1934-2010
Is type inference hard?

• The algorithm used in ML is quite clever yet relatively easy to implement
• Difficulty of doing type inference for any particular language is often hard to determine
• Designing type inference for a particular language can be quite hard; must balance
 – expressivity of type system with
 – possibility of inferring all types without requiring annotations
HM type inference

- Algorithm used in OCaml is called HM
 - Hindley & Milner invented it independently

- Guarantees of HM:
 - **It never makes mistakes.** HM will never infer types that cause a program to fail to type check.
 - **It never fails.** HM will never reject a program that could have been type-checked if programmer had written down all the types.
 - (true of nearly all the language; over time some features have been added for which it's not true; see RWO for examples)
HM type inference

• Determine types of definitions in order
 – Use types of earlier definitions to infer later
 – (which is one reason why you can’t use later definitions in file)

• For each definition:
 – collect constraints on types
 – solve constraints to determine type
Example

\[
\text{let } g \ x = 5 + x
\]

Desugar:

\[
\text{let } g = \text{fun} \ x \to ((+) \ 5) \ x
\]
Example

```plaintext
let g = fun x -> ((+) 5) x
```

Step 1: Assign preliminary types to all subexpressions

<table>
<thead>
<tr>
<th>Subexpression</th>
<th>Preliminary type</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fun x -> ((+) 5) x</code></td>
<td></td>
</tr>
</tbody>
</table>
Example

\[\text{let } g = \text{fun} \ x \rightarrow (+(5)) \ x \]

Step 1: Assign preliminary types to all subexpressions

<table>
<thead>
<tr>
<th>Subexpression</th>
<th>Preliminary type</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{fun} \ x \rightarrow (+(5)) \ x</td>
<td></td>
</tr>
<tr>
<td>\text{x}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[(+(5)) \ x | |
|

\[+(5) | |
|

\[+(5) | |
|

\[5 | |
|

\[x | |}
Example

```ml
let g = fun x -> ((+) 5) x
```

Step 1: Assign preliminary types to all subexpressions

<table>
<thead>
<tr>
<th>Subexpression</th>
<th>Preliminary type</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fun x -> ((+) 5) x</code></td>
<td></td>
</tr>
<tr>
<td><code>x</code></td>
<td></td>
</tr>
<tr>
<td><code>(+) 5</code></td>
<td><code>int</code> -> <code>int</code> -> <code>int</code></td>
</tr>
<tr>
<td><code>(+)</code></td>
<td><code>int</code></td>
</tr>
<tr>
<td><code>5</code></td>
<td><code>int</code></td>
</tr>
<tr>
<td><code>x</code></td>
<td></td>
</tr>
</tbody>
</table>
Example

```plaintext
let g = fun x -> ((+) 5) x
```

Step 1: Assign preliminary types to all subexpressions

<table>
<thead>
<tr>
<th>Subexpression</th>
<th>Preliminary type</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fun x -> ((+) 5) x</code></td>
<td>(R)</td>
</tr>
<tr>
<td><code>x</code></td>
<td>(U)</td>
</tr>
<tr>
<td><code>(+) 5</code></td>
<td>(S)</td>
</tr>
<tr>
<td><code>((+) 5) x</code></td>
<td>(T)</td>
</tr>
<tr>
<td><code>int -> int -> int</code></td>
<td></td>
</tr>
<tr>
<td><code>(+)</code></td>
<td><code>int</code></td>
</tr>
<tr>
<td><code>5</code></td>
<td></td>
</tr>
<tr>
<td><code>x</code></td>
<td>(V)</td>
</tr>
</tbody>
</table>

\(R,S,T,U,V \) are preliminary type variables used during inference
Example

<table>
<thead>
<tr>
<th>Subexpression</th>
<th>Preliminary type</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fun x -> ((+) 5) x</code></td>
<td><code>R</code></td>
</tr>
<tr>
<td><code>x</code></td>
<td><code>U</code></td>
</tr>
<tr>
<td><code>((+) 5) x</code></td>
<td><code>S</code></td>
</tr>
<tr>
<td><code>(+) 5</code></td>
<td><code>T</code></td>
</tr>
<tr>
<td><code>(+)</code></td>
<td><code>int -> int -> int</code></td>
</tr>
<tr>
<td><code>5</code></td>
<td><code>int</code></td>
</tr>
<tr>
<td><code>x</code></td>
<td><code>V</code></td>
</tr>
</tbody>
</table>

```
fun x -> ((+) 5) x
```

```
apply : S

x : U

apply : T

(+)

5: int

: int->int->int
```
Question

Did we really need to give \(x \) two different preliminary type variables?

A. Yes
B. No
Question

Did we really need to give \(x \) two different preliminary type variables?

A. Yes
B. No
Example

```ml
let g = fun x -> ((+) 5) x
```

Step 2: Collect constraints
Example

\texttt{let } g = \texttt{fun } x \rightarrow ((+) 5) x

Step 2: Collect constraints

<table>
<thead>
<tr>
<th>Subexpression</th>
<th>Preliminary type</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{fun } x \rightarrow ((+) 5) x</td>
<td>\texttt{R}</td>
</tr>
<tr>
<td>\texttt{x}</td>
<td>\texttt{U}</td>
</tr>
<tr>
<td>((+) 5) x</td>
<td>\texttt{S}</td>
</tr>
</tbody>
</table>

Constraint from function:
\[R = U \rightarrow S \]
Example

\texttt{let } g = \texttt{fun } x \rightarrow ((+) 5) \ x

Step 2: Collect constraints

<table>
<thead>
<tr>
<th>Subexpression</th>
<th>Preliminary type</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{x}</td>
<td>\texttt{U}</td>
</tr>
<tr>
<td>\texttt{x}</td>
<td>\texttt{V}</td>
</tr>
</tbody>
</table>

Constraint from variable usage:

\[U = V \]
Example

\texttt{let } \texttt{g = fun x -> ((+ 5)) x}

Step 2: Collect constraints

<table>
<thead>
<tr>
<th>Subexpression</th>
<th>Preliminary type</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{((+ 5)) x}</td>
<td>\texttt{S}</td>
</tr>
<tr>
<td>\texttt{x}</td>
<td>\texttt{V}</td>
</tr>
<tr>
<td>\texttt{(+ 5)}</td>
<td>\texttt{T}</td>
</tr>
</tbody>
</table>

Constraint from application:
\[T = V \rightarrow S \]
Example

```haskell
let g = fun x -> ((+) 5) x
```

Step 2: Collect constraints

<table>
<thead>
<tr>
<th>Subexpression</th>
<th>Preliminary type</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+) 5</td>
<td>T</td>
</tr>
<tr>
<td>(+)</td>
<td>int -> int -> int</td>
</tr>
<tr>
<td>5</td>
<td>int</td>
</tr>
</tbody>
</table>

Constraint from application:

```
int -> int -> int = int -> T
```
Example

```plaintext
let g = fun x -> ((+) 5) x
```

Step 2: Collect constraints

- \(U = V \)
- \(R = U \rightarrow S \)
- \(T = V \rightarrow S \)
- \(\text{int} \rightarrow \text{int} \rightarrow \text{int} = \text{int} \rightarrow T \)
Example

```
let g = fun x -> ((+) 5) x
```

Step 3: Solve constraints

```
U = V

R = U -> S

T = V -> S

int -> int -> int = int -> T
```
Example

```ml
let g = fun x -> ((+) 5) x
```

Step 3: Solve constraints

\[
\begin{align*}
U &= V \\
R &= U \rightarrow S \\
T &= V \rightarrow S \\
\text{int} \rightarrow \text{int} \rightarrow \text{int} &= \text{int} \rightarrow T
\end{align*}
\]
Example

\[
\text{let } g = \text{ fun } x \rightarrow ((+) 5) x
\]

Step 3: Solve constraints

\[
R = U \rightarrow S \\
T = U \rightarrow S \\
\text{int } \rightarrow \text{ int } \rightarrow \text{ int } = \text{ int } \rightarrow T
\]
Example

```plaintext
let g = fun x -> (+(+) 5) x
```

Step 3: Solve constraints

$$R = U \rightarrow S$$
$$T = U \rightarrow S$$

$$\text{int} \rightarrow \text{int} \rightarrow \text{int} = \text{int} \rightarrow T$$
Example

\texttt{let g = fun x -> ((+ 5) x)}

Step 3: Solve constraints

\[R = U \rightarrow S \]

\[\text{int} \rightarrow \text{int} \rightarrow \text{int} = \text{int} \rightarrow U \rightarrow S \]
Example

\[
\text{let } g = \text{ fun } x \rightarrow (+(+\ 5\)) \ x
\]

Step 3: Solve constraints

\[
R = U \rightarrow S
\]

\[
\text{int} \rightarrow \text{int} \rightarrow \text{int} = \text{int} \rightarrow U \rightarrow S
\]
Example

$let \ g = fun \ x \rightarrow ((+) \ 5) \ x$

Step 3: Solve constraints

$R = \text{int} \rightarrow \text{int}$
Example

\[
\text{let } g = \text{fun } x \rightarrow ((+5)x)
\]

Step 3: Solve constraints

\[R = \text{int} \rightarrow \text{int} \]

Done: type of \(g \) is \(\text{int} \rightarrow \text{int} \)
Algorithm for constraint collection

• **Input:** an expression e
 – Assume that every anonymous function in e has a different variable name as its argument
 – Easy to ensure that holds, thanks to lexical scope: rename arguments as necessary

• **Output:** a set of constraints
Constraint collection

• Intuition: assign a unique type variable (e.g., R, S, T, ...),
 – one to each argument \(x \) of a function in \(e \)
 – one to every subexpression \(e' \) in \(e \)
 – like how we decorated (aka annotated) AST in example

• Formally: define two functions that return type variables:
 – \(D \): definition of an argument
 – \(U \): use of a subexpression
 – \(D(x) \) returns the type variable assigned to argument \(x \)
 – \(U(e') \) returns the type variable assigned to subexpression \(e' \)
Constraint collection

Example:
• Input: \texttt{fun x -> (fun y -> x)}
• Define two functions for type variables:
 \begin{itemize}
 \item \(D(x) = R\)
 \item \(D(y) = S\)
 \item \(U(\texttt{fun x -> (fun y -> x)}) = T\)
 \item \(U(\texttt{fun y -> x}) = X\)
 \item \(U(x) = Y\)
 \end{itemize}
Constraint collection

Constraints that are collected (intuition):
• For each kind of expression (application, anonymous function, let, etc.), collect a set of equations that must hold for that kind of expression
 – e.g., the type of entire anonymous function must equal type of its argument arrow type of its body
 – which is what we did in example earlier
Constraint collection

Constraints that are collected (formally):

- At a variable usage x:
 \[U(x) = D(x) \]

- At a function application $e_1 \ e_2$:
 \[U(e_1) = U(e_2) \implies U(e_1 \ e_2) \]

- At an anonymous function $\text{fun} \ x \rightarrow e$:
 \[U(\text{fun} \ x \rightarrow e) = D(x) \rightarrow U(e) \]

- At a let expression $\text{let} \ x = e_1 \ \text{in} \ e_2$:
 \[U(\text{let} \ x = e_1 \ \text{in} \ e_2) = U(e_2) \text{ and } D(x) = U(e_1) \]

- etc.

- Unioned with constraints collected at each subexpression

- Note how these are essentially the static semantics!

Return those constraints as output of algorithm
Constraint collection

Example (continued):

• **Input:** fun x -> (fun y -> x)
 - x occurs as subexpression, so generate constraint U(x) = D(x)
 - Already have U(x) = Y and D(x) = R
 - So constraint is Y = R

• **fun y -> ux** occurs as subexpression, so generate constraint U(fun y -> x) = D(y) -> U(x)
 - Already have U(x) = Y, and U(fun y -> x) = X, and D(y) = S
 - So constraint is X = S -> Y

• **fun x -> (fun y -> x)** occurs as subexpression, so generate constraint U(fun x -> (fun y -> x)) = D(x) -> U(fun y -> x)
 - Resulting constraint is T = R -> X
Solving constraints

• After collection, have a set of constraints
 – Really a set of equations

• Need to solve those equations for type of main expression of interest

• *Unification* algorithm [Robinson 1965]
 – roughly like Gaussian elimination to solve system of matrix equations in linear algebra
 – see notes for the algorithm
Upcoming events

• nothing this week

This is cool, calm, and collected.

THIS IS 3110