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Review 

Previously in 3110: 
•  Interpreters:  ASTs, evaluation, parsing 
•  Formal syntax 
•  Formal semantics 
–  Small-step 
–  Big-step 

 
Today: 
•  Type inference 



Kinds of typing 

•  Static: type checking done by analysis of program 
–  Compiler/interpreter verifies that type errors cannot occur 
–  e.g., C, C++, F#, Haskell, Java, OCaml 

•  Dynamic:  type checking done by run-time 
–  Run-time detects type errors and report them.  Usually 

requires keeping extra tag information for each value in 
memory. 

–  e.g., JavaScript, LISP, Matlab, PHP, Python, Ruby 

•  Can be a spectrum, e.g., instanceof in Java:  some 
checking done at compile time, rest of checking done at 
run time 



Kinds of typing 

•  Strong: type of a value is independent of how it’s used 
–  Can’t pass a string where an int expected, etc. 
–  e.g., OCaml, Haskell, Python, Java, Ruby 

•  Weak: type of value is dependent on how it’s used 
–  If  a string is used where an int expected, it gets 

converted automatically or by type cast to an int
–  e.g., C, C++, Perl 

•  Can be a spectrum 
–  e.g., Java + operator converts objects to strings 

•  Troll alert:  strong vs. weak is debated a lot; probably not 
helpful to degenerate into such debates 



Typing quadrant 

Weak	 Strong	

Sta,c	 C,	C++	 OCaml,	Java,	
Haskell	

Dynamic	 Perl,	Assembly	 Ruby,	Python,	
Scheme	



Kinds of typing 

•  Manifest: type information supplied in source code 
–  e.g., C, C++, Java 

•  Implicit: type information not supplied in source code 
–  Implementation 1: Dynamic typing  

•  e.g., LISP, Python, Ruby, PHP 
–  Implementation 2: Type inference 

•  e.g., Haskell, OCaml 
–  Tradeoff:  ease of implementation vs. run-time 

performance 
•  Can be a spectrum 
–  e.g., no reasonable language requires you to write to 

provide the type of 5 in x:int = 5 



Type inference 

•  Goal is to reconstruct types of expressions based on known 
types of some symbols that occur in expressions 
–  Type checkers have to do some of this anyway 
–  Difference between inference and checking is really a matter of 

degree 
•  Best known in functional languages 

–  Especially useful in managing the types of higher-order functions 
–  But starting to appear in mainstream languages, e.g., C++11: 

•  auto x = e; declares variable x, initialized with expression e, and 
type of x is automatically inferred 

•  decltype(e) is a type that means “whatever type e has” 

•  Invented by Robin Milner for SML (though other people also 
deserve credit; see the notes) 



Robin Milner 

Awarded 1991 Turing Award for  
“…ML, the first language to include 
polymorphic type inference and a type-
safe exception handling mechanism…” 

1934-2010 



Is type inference hard? 

•  The algorithm used in ML is quite clever yet 
relatively easy to implement  

•  Difficulty of doing type inference for any 
particular language is often hard to determine 

•  Designing type inference for a particular 
language can be quite hard; must balance 
– expressivity of type system with 

– possibility of inferring all types without requiring 
annotations 



HM type inference 

•  Algorithm used in OCaml is called HM 
– Hindley & Milner invented it independently 

•  Guarantees of HM: 
–  It never makes mistakes.  HM will never infer types that 

cause a program to fail to type check. 
–  It never fails.  HM will never reject a program that could 

have been type-checked if programmer had written 
down all the types. 
•  (true of nearly all the language; over time some features have 

been added for which it's not true; see RWO for examples) 



HM type inference 

•  Determine types of definitions in order 
– Use types of earlier definitions to infer later 
–  (which is one reason why you can’t use later 

definitions in file) 

•  For each definition: 
– collect constraints on types 

–  solve constraints to determine type 



Example 

let g x = 5 + x
 
Desugar:   
let g = fun x -> ((+) 5) x

fun  

x	

x	

apply 

(+)	

apply 

5	
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Step 1:  Assign preliminary types to all subexpressions 
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Subexpression	 Preliminary	type	
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    x

         ((+) 5) x

          (+) 5

          (+)

              5

                 x



Example 

let g = fun x -> ((+) 5) x
 
Step 1:  Assign preliminary types to all subexpressions 

Subexpression	 Preliminary	type	

fun x -> ((+) 5) x

    x

         ((+) 5) x

          (+) 5

          (+) int -> int -> int	

              5 int  

                 x



Example 

let g = fun x -> ((+) 5) x
 
Step 1:  Assign preliminary types to all subexpressions 

Subexpression	 Preliminary	type	

fun x -> ((+) 5) x R 

    x U 

         ((+) 5) x S 

          (+) 5 T 

          (+) int -> int -> int	

              5 int  

                 x V 

R,S,T,U,V are preliminary type variables used during inference 



Example 

Subexpression	 Preliminary	type	

fun x -> ((+) 5) x R 

    x U 

         ((+) 5) x S 

          (+) 5 T 

          (+) int -> int -> int	

              5 int  

                 x V 

fun : R  

x : U 

x : V 

apply : S 

(+)  
:int->int->int

apply : T 

5:int	



Question 

Did we really need to give x two different 
preliminary type variables? 
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Example 

let g = fun x -> ((+) 5) x
 
Step 2:  Collect constraints 

Subexpression	 Preliminary	type	

fun x -> ((+) 5) x R 

    x U 

         ((+) 5) x S 

Constraint from function: 
R = U -> S 



Example 

let g = fun x -> ((+) 5) x
 
Step 2:  Collect constraints 

Subexpression	 Preliminary	type	

    x U 

                 x V 

Constraint from variable usage:   
U = V 



Example 

let g = fun x -> ((+) 5) x
 
Step 2:  Collect constraints 

Subexpression	 Preliminary	type	

         ((+) 5) x S 

                 x V 

          (+) 5 T 

Constraint from application: 
T = V -> S 



Example 

let g = fun x -> ((+) 5) x
 
Step 2:  Collect constraints 

Subexpression	 Preliminary	type	

          (+) 5 T 

          (+) int -> int -> int	

              5 int  

Constraint from application: 
int -> int -> int   =   int -> T 



Example 

let g = fun x -> ((+) 5) x
 
Step 2:  Collect constraints 

U = V	
R = U->	S		
T = V->	S	 

int -> int -> int	 = int -> T	 



Example 

let g = fun x -> ((+) 5) x
 
Step 3:  Solve constraints 

R = U->	S		
T = U->	S	 

int -> int -> int	 = int -> T	 

U = V	
R = U->	S		
T = V->	S	 

int -> int -> int	 = int -> T	 



Example 

let g = fun x -> ((+) 5) x
 
Step 3:  Solve constraints 

R = U->	S		
T = U->	S	 

int -> int -> int	 = int -> T	 

U = V	
R = U->	S		
T = V->	S	 

int -> int -> int	 = int -> T	 



Example 

let g = fun x -> ((+) 5) x
 
Step 3:  Solve constraints 

R = U->	S		
T = U->	S	 

int -> int -> int	 = int -> T	 



Example 

let g = fun x -> ((+) 5) x
 
Step 3:  Solve constraints 

R = U->	S		
T = U->	S	 

int -> int -> int	 = int -> T	 



Example 

let g = fun x -> ((+) 5) x
 
Step 3:  Solve constraints 

R = U->	S		
int -> int -> int	 = int -> U ->		S		 



Example 
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Example 

let g = fun x -> ((+) 5) x
 
Step 3:  Solve constraints 

R = int -> int		



Example 

let g = fun x -> ((+) 5) x
 
Step 3:  Solve constraints 

R = int -> int		

Done:  type of g is int -> int



Algorithm for constraint collection 

•  Input:  an expression e
– Assume that every anonymous function in e has a 

different variable name as its argument 

– Easy to ensure that holds, thanks to lexical scope: 
rename arguments as necessary 

•  Output:  a set of constraints 
 



Constraint collection 

•  Intuition: assign a unique type variable (e.g., R, S, T, …), 
–  one to each argument x of a function in e
–  one to every subexpression e’ in e
–  like how we decorated (aka annotated) AST in example

•  Formally:  define two functions that return type variables: 
–  D: definition of an argument 
–  U: use of a subexpression 
–  D(x) returns the type variable assigned to argument x
–  U(e’) returns the type variable assigned to subexpression e’ 

 



Constraint collection 

Example: 
•  Input:  fun x -> (fun y -> x)
•  Define two functions for type variables: 
– D(x) = R  
– D(y) = S 
– U(fun x -> (fun y -> x))  = T 
– U(fun y -> x) = X 
– U(x) = Y  

 



Constraint collection 

Constraints that are collected (intuition): 
•  For each kind of expression (application, 

anonymous function, let, etc.), collect a set of 
equations that must hold for that kind of 
expression 
– e.g., the type of entire anonymous function must 

equal type of its argument arrow type of its body 
– which is what we did in example earlier 



Constraint collection 
Constraints that are collected (formally): 
•  At a variable usage x:   

U(x) = D(x) 
•  At a function application e1 e2:  

U(e1) = U(e2) -> U(e1 e2)  
•  At an anonymous function fun x -> e:   
•  U(fun x -> e) = D(x) -> U(e)  
•  At a let expression let x = e1 in e2: 

U(let x = e1 in e2) = U(e2) and D(x) = U(e1) 
•  etc. 
•  Unioned with constraints collected at each subexpression 
•  Note how these are essentially the static semantics! 
 
Return those constraints as output of algorithm 



Constraint collection 

Example (continued): 
•  Input:  fun x -> (fun y -> x)
•  x occurs as subexpression, so generate constraint U(x) = D(x) 

–  Already have U(x) = Y and D(x) = R 
–  So constraint is Y = R 

•  fun y -> ux occurs as subexpression, so generate 
constraint U(fun y -> x) = D(y) -> U(x)    
–  Already have U(x) = Y, and U(fun y -> x) = X, and D(y) = S 
–  So constraint is X = S -> Y 

•  fun x -> (fun y -> x) occurs as subexpression, so 
generate constraint U(fun x -> (fun y -> x)) = 
D(x) -> U(fun y -> x) 
–  Resulting constraint is T = R -> X      



Solving constraints 

•  After collection, have a set of constraints 
– Really a set of equations 

•  Need to solve those equations for type of main 
expression of interest 

•  Unification algorithm [Robinson 1965] 
–  roughly like Gaussian elimination to solve system of 

matrix equations in linear algebra 

–  see notes for the algorithm 



Upcoming events 

•  nothing this week 
 

This is cool, calm, and collected. 

THIS IS 3110 


