Lecture 15: Efficiency

Prof. Clarkson
Spring 2015

Today’s music: Opening theme from The Big O
(The Big O)
by Toshihiko Sahashi
Review

Course so far:
• Introduction to functional programming
• Modular programming

Next:
• Reasoning about programs
• Today:
 – What it means to be efficient
Question 1

Which of the following would you prefer?

A. $O(n^2)$
B. $O(\log(n))$
C. $O(n)$
D. They're all good
E. I thought this was 3110, not Algo
Question 1

Which of the following would you prefer?

A. O(n^2)
B. O(log(n))
C. O(n)
D. They're all good
E. I thought this was 3110, not Algo
Performance

• You've built beautiful, elegant, functional code
• You've organized it into modules with clear specifications

• **Now**, you begin to worry about performance
 – Some part of code is too slow
 – You want to understand the *efficiency* of a data abstraction, like a hash table
 – You want to find a more *efficient* algorithm
What is "efficiency"?

Attempt #1: An algorithm is efficient if, when implemented, it runs quickly on particular input instances

...problems with that?
What is "efficiency"?

Attempt #1: An algorithm is efficient if, when implemented, it runs quickly on particular input instances

Incomplete list of problems:
- Inefficient algorithms can run quickly on small test cases
- Fast processors and optimizing compilers can make inefficient algorithms run quickly
- Efficient algorithms can run slowly when coded sloppily
- Some input instances are harder than others
- Efficiency on small inputs doesn't imply efficiency on large inputs
- Some clients can afford to be more patient than others; quick for me might be slow for you
Lessons learned from attempt #1

Lesson 1: Time as measured by a clock is not the right metric

— Want a metric that is reasonably independent of hardware, compiler, other software running, etc.
— idea: number of steps taken by dynamic semantics during evaluation of program

• steps are independent of implementation details
• But: each step might really take a different amount of time?
 — creating a closure, looking up a variable, computing an addition
• in practice, the difference isn’t really big enough to matter
Lessons learned from attempt #1

Lesson 2: Running time on particular input instances is not the right metric

– Want a metric that can predict running time on any input instance
– idea: size of the input instance
 • make metric be a function of input size
 • (combined with lesson 1) specifically, the maximum number of steps for an input of that size
 • But: particular inputs of the same size might really take a different amount of time?
 – multiplying arbitrary matrices vs. multiplying by all zeros
 • in practice, size matters more
Lessons learned from attempt #1

Lesson 3: Quickness is not the right metric

– Want a metric that is reasonably objective; independent of subjective notions of what is fast

– **idea:** beats brute-force search

 • *brute force:* enumerate all the answers one by one, check and see whether the answer is right
 – the simple, dumb solution to nearly any algorithmic problem
 – related idea: guess an answer, check whether correct e.g., bogosort

 • but *by how much* is enough to beat brute-force search?
Lessons learned from attempt #1

Lesson 3: Quickness is not the right metric

– Want a metric that is reasonably objective; independent of subjective notions of what is fast

– **better idea:** polynomial time

 • (combined with ideas from previous two lessons)
 can express maximum number of steps as a polynomial function of the size N of input, e.g.,
 – aN^2 + bN + c
 • But: some polynomials might be too big to be quick (N^100)?
 • But: some non-polynomials might be quick enough (N^(1+.02*(log N)))?

 • in practice, polynomial time really does work
What is "efficiency"?

Attempt #2: An algorithm is efficient if its maximum number of steps of execution is polynomial in the size of its input.

let's give that a try...
Analysis of running time

```
INSERTION-SORT(A)
1  for j = 2 to A.length
2      key = A[j]
3    // Insert A[j] into the sorted sequence A[1 .. j - 1]
4      i = j - 1
5    while i > 0 and A[i] < key
6      A[i + 1] = A[i]
7        i = i - 1
8      A[i + 1] = key
```

<table>
<thead>
<tr>
<th>cost</th>
<th>times</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>n</td>
</tr>
<tr>
<td>c_2</td>
<td>$n - 1$</td>
</tr>
<tr>
<td>c_4</td>
<td>$n - 1$</td>
</tr>
</tbody>
</table>

$c_5 = \sum_{j=2}^{n} t_j$

$c_6 = \sum_{j=2}^{n} (t_j - 1)$

$c_7 = \sum_{j=2}^{n} (t_j - 1)$

$c_8 = n - 1$

[Cormen et al. *Introduction to Algorithms*, 3rd ed, 2009]
Analysis of running time

The running time of the algorithm is the sum of running times for each statement executed; a statement that takes \(c_i \) steps to execute and executes \(n \) times will contribute \(c_i n \) to the total running time.\(^6\) To compute \(T(n) \), the running time of INSERTION-SORT on an input of \(n \) values, we sum the products of the cost and times columns, obtaining

\[
T(n) = c_1 n + c_2 (n - 1) + c_4 (n - 1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) \\
+ c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n - 1).
\]

\[\text{[Cormen et al. } \text{Introduction to Algorithms, 3rd ed, 2009]}\]
Precision of running time

• Precise bounds are **exhausting to find**
• Precise bounds are to some extent **meaningless**
 – Are those constants c1..c8 really useful?
 – If it takes 25 steps in high level language, but compiled down to assembly would take 10x more steps, is the precision useful?
 – Caveat: if you're building code that flies an airplane or controls a nuclear reactor, you do care about precise, real-time guarantees
Some simplified running times

<table>
<thead>
<tr>
<th>size of input</th>
<th>max # steps as function of N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>N=10</td>
<td>< 1 sec</td>
</tr>
<tr>
<td>N=100</td>
<td>< 1 sec</td>
</tr>
<tr>
<td>N=1,000</td>
<td>< 1 sec</td>
</tr>
<tr>
<td>N=10,000</td>
<td>< 1 sec</td>
</tr>
<tr>
<td>N=100,000</td>
<td>< 1 sec</td>
</tr>
<tr>
<td>N=1,000,000</td>
<td>1 sec</td>
</tr>
</tbody>
</table>

assuming 1 microsecond/step

very long = more years than the estimated number of atoms in universe
Simplifying running times

- Rather than $1.62N^2 + 3.5N + 8$ steps, we would rather say that running time "grows like N^2"
 - identify broad classes of algorithm with similar performance
- Ignore the *low-order terms*
 - e.g., ignore $3.5N+8$
 - Why? For big N, N^2 is much, much bigger than N
- Ignore the *constant factor* of high-order term
 - e.g., ignore 1.62
 - Why? For classifying algorithms, constants aren't meaningful
 - Code run on my machine might be a constant factor faster or slower than on your machine, but that's not a property of the algorithm
 - Caveat: Performance tuning real-world code actually can be about getting the constants to be small!
- Abstraction to an imprecise quantity
Imprecise abstractions

• OCaml's `int` type is an abstraction of a subset of \(\mathbb{Z}\)
 – don't know which `int` when reasoning about the type of an expression
• ±1 is an abstraction of \(\{1, -1\}\)
 – don't know which when manipulating it in a formula
• Here's a new one: Big Ell
 – \(L(e)\) represents a natural number whose value is less than or equal to \(e\)
 – precisely, \(L(e) = \{m \mid 0 \leq m \leq e\}\)
 – e.g., \(L(5) = \{0, 1, 2, 3, 4, 5\}\)
Manipulating Big Ell

• What is 1 + L(5)?
• Trick question!
 – Replace L(5) with set: 1 + {0..5}
 – But + is defined on ints, not sets of ints
• We could distribute the + over the set:
 \{1+0, ..., 1+5\} = \{1..6\}
 – That is, a set of values, one for each possible instantiation of L(5)
• Note that \{1..6\} \subseteq \{0..6\} = L(6)
• So we could say that 1 + L(5) \subseteq L(6)
Question #2

What is L(2) + L(3)?

Hint: set of values, one for each possible instantiation of L(2) and of L(3)

A. L(2) + L(3) ⊆ L(2)
B. L(2) + L(3) ⊆ L(3)
C. L(2) + L(3) ⊆ L(4)
D. L(2) + L(3) ⊆ L(5)
E. L(2) + L(3) ⊆ L(6)
Question #2

What is $L(2) + L(3)$?

Hint: set of values, one for each possible instantiation of $L(2)$ and of $L(3)$

A. $L(2) + L(3) \subseteq L(2)$
B. $L(2) + L(3) \subseteq L(3)$
C. $L(2) + L(3) \subseteq L(4)$
D. $L(2) + L(3) \subseteq L(5)$
E. $L(2) + L(3) \subseteq L(6)$
Question #3

What is $L(2) \times L(3)$?

A. $L(2) \times L(3) \subseteq L(2)$
B. $L(2) \times L(3) \subseteq L(3)$
C. $L(2) \times L(3) \subseteq L(4)$
D. $L(2) \times L(3) \subseteq L(5)$
E. $L(2) \times L(3) \subseteq L(6)$
Question #3

What is $L(2) \ast L(3)$?

A. $L(2) \ast L(3) \subseteq L(2)$
B. $L(2) \ast L(3) \subseteq L(3)$
C. $L(2) \ast L(3) \subseteq L(4)$
D. $L(2) \ast L(3) \subseteq L(5)$
E. $L(2) \ast L(3) \subseteq L(6)$
A little trickier...

What is $2^L(3)$?

- $L(3) = \{0..3\}$
- So $2^L(3)$ could be any of $\{2^0, \ldots, 2^3\} = \{1, 2, 4, 8\}$
- And $\{1,2,4,8\} \subseteq L(8) = L(2^3)$
- Therefore $2^L(3) \subseteq L(2^3)$

...we can use this idea of Big Ell to invent an imprecise abstraction for running times
Big Oh, take 1

- Recall: we're interested in running time as a function of input size
- Recall: \(L(e) \) represents any natural number that is less than or equal to a natural number \(e \)
- "New" imprecise abstraction: Big Oh
 - \(O(g) \) represents any function that is less than or equal to function \(g \), for every input \(n \).
 - precisely, \(O(g) = \{ f \mid \forall n, f(n) \leq g(n) \} \)
 - e.g., \(O(\text{fun } n \to 2n) = \{ f \mid \forall n, f(n) \leq 2n \} \)
 - \((\text{fun } n \to n) \in O(\text{fun } n \to 2n) \)
- For simplicity, let's assume function inputs and outputs are non-negative (since input size and running time won't be negative)
Recall: we want to ignore constant factors

- $O(g)$ represents any function that is less than or equal to function g times some positive constant c, for every input n.

- Precisely, $O(g) = \{ f | \text{exists } c>0, \forall n, f(n) \leq c \times g(n) \}$

- E.g., $O(\text{fun n -> n}^3) = \{ f | \text{exists } c>0, \forall n, f(n) \leq c \times n^3 \}$
 - $(\text{fun n -> 3*n}^3) \in O(\text{fun n -> n}^3)$ because $3\times n^3 \leq c \times n^3$, where $c = 3$ (or $c=4, \ldots$)
Big Oh, take 3

Recall: we care about what happens at scale

could just build a lookup table for inputs in the range 0..2
Recall: we care about what happens at scale

– $O(g)$ represents any function that is less than or equal to function g times some positive constant c, for every input n greater than or equal to some positive constant n_0.

– precisely, $O(g) = \{ f \mid \exists c > 0, n_0 > 0, \forall n \geq n_0, \; f(n) \leq c \cdot g(n) \}$

– e.g., $O(\text{fun } n -> n^2) = \{ f \mid \exists c > 0, n_0 > 0, \forall n \geq n_0, \; f(n) \leq c \cdot n^2 \}$

• $(\text{fun } n -> 2n) \in O(\text{fun } n -> n^2)$
 because $2n \leq c \cdot n^2$, where $c = 2$, for all $n \geq 1$
Big Oh

The important, final definition you should know:

\[O(g) = \{ f \mid \text{exists } c > 0, n_0 > 0, \forall n \geq n_0, \quad f(n) \leq c \times g(n) \} \]
Instead of

$$O(g) = \{f \mid \ldots\}$$

most authors write

$$O(g(n)) = \{f(n) \mid \ldots\}$$

- They don't really mean g applied to n; they mean a function g parameterized on input n but not yet applied
- Maybe they never studied functional programming 😊
Big Oh Notation: Warning 2

Instead of

\[(\text{fun } n \rightarrow 2n) \in O(\text{fun } n \rightarrow n^2)\]

all authors write

\[2n = O(n^2)\]

- Your instructor has always found this abusage distressing
- Yet henceforth he will follow the convention 😊
 - The standard defense is that = should be read here as "is" not as "equals"
 - Be careful: one-directional equality!
A Theory of Big Oh

- reflexivity: \(f = O(f) \)
- \((no\ symmetry\ condition\ for\ Big\ Oh;\ there\ is\ one\ for\ Big\ Theta)\)
- transitivity: \(f = O(g) \land g = O(h) \Rightarrow f = O(h) \)
- \(c \ast O(f) = O(f) \)
- \(O(c \ast f) = O(f) \)
- \(O(f) \ast O(g) = O(f \ast g) \)
 - where \(f \ast g \) means \((\text{fun } n \rightarrow f(n) \ast g(n))\)
- ...

Useful to know these equalities so that you don't have to keep re-deriving them from first principles
What is "efficiency"?

Final attempt: An algorithm is efficient if its worst-case running time is $O(N^d)$ for some constant d.
Running times of some algorithms

• \(O(1)\): **constant**: access an element of an array (of length \(n\))
• \(O(\log n)\): **logarithmic**: binary search through sorted array of length \(n\)
• \(O(n)\): **linear**: maximum element of list of length \(n\)
• \(O(n \log n)\): **linearithmic**: mergesort a list of length \(n\)
• \(O(n^2)\): **quadratic**: bubblesort an array of length \(n\)
• \(O(n^3)\): **cubic**: matrix multiplication of \(n\)-by-\(n\) matrices
• \(O(2^n)\): **exponential**: enumerate all integers of bit length \(n\)

...some of these are not obvious, require proof