Amortized Analysis

Prof. Clarkson
Fall 2015

Today’s music: "Money, Money, Money" by ABBA
Review

Current topic: Reasoning about performance
• Efficiency
• Big Oh

Today:
• Alternative notions of efficiency
• Amortized analysis
 – Efficiency of data abstractions, not just individual functions
Question

What semester did you take CS 2110?

A. 2013 spring or earlier
B. 2013 fall
C. 2014 spring
D. 2014 fall
E. 2015 spring
Review: What is "efficiency"?

Final attempt: An algorithm is efficient if its worst-case running time on input of size N is $O(N^d)$ for some constant d.
Asymptotic bounds

Big Oh:

- asymptotic upper bound
- $O(g) = \{ f | \exists c > 0, n_0 > 0, \forall n \geq n_0, f(n) \leq c \cdot g(n) \}$
- intuitions: $f \leq g$, f is at least as efficient as g
Asymptotic bounds

Big Omega

- asymptotic lower bound
- $\Omega(g) = \{f \mid \text{exists } c > 0, n_0 > 0, \forall n \geq n_0, f(n) \geq c \cdot g(n)\}$
- intuitions: $f \geq g$, f is at most as efficient as g
Asymptotic bounds

Big Theta

- asymptotic tight bound
- \(\Theta(g) = O(g) \cap \Omega(g) \)
- \(\Theta(g) = \{f \mid \text{exists } c_1>0, c_2>0, n_0>0, \forall n \geq n_0, c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)\} \)
- intuitions: \(f = g \), \(f \) is just as efficient as \(g \)
- beware: some authors write \(O(g) \) when they really mean \(\Theta(g) \)
Asymptotic bounds

[Cormen et al. *Introduction to Algorithms*, 3rd ed, 2009]
Alternative notions of efficiency

• **Expected-case** running time
 – Instead of worst case
 – Useful for randomized algorithms
 – Maybe less useful for deterministic algorithms
 • Unless you really do know something about probability distribution of inputs
 • All inputs are probably not equally likely

• **Space**
 – How much memory is used? Cache space? Disk space?

• **Other resources**
 – Power, network bandwidth, ...

• **Efficiency of an entire data abstraction...**
Stacks with multipop

module type STACK = sig
 type 'a t
 exception Empty

 val empty : 'a t
 val is_empty : 'a t -> bool
 val push : 'a -> 'a t -> 'a t
 val peek : 'a t -> 'a
 val pop : 'a t -> 'a t
 val multipop : int -> 'a t -> 'a t
end
Stacks with multipop

```ocaml
module Stack : STACK = struct
  type 'a t = 'a list
  exception Empty

  let empty = []
  let is_empty s = s = []
  let push x s = x :: s
...
```
Stacks with multipop

```ocaml
module Stack : STACK = struct
  type 'a t = 'a list

  exception Empty

  let empty = [] (* O(1) *)
  let is_empty s = s = [] (* O(1) *)
  let push x s = x :: s (* O(1) *)

  ...
```
Stacks with multipop

```ocaml
module Stack : STACK = struct
...

let peek = function
| []        -> raise Empty
| x::xs     -> x

let pop = function
| []        -> raise Empty
| x::xs     -> xs
...
```
Stacks with multipop

```ocaml
module Stack : STACK = struct

  ...

  let peek = function (* O(1) *)
  | []    -> raise Empty
  | x::xs -> x

  let pop = function (* O(1) *)
  | []    -> raise Empty
  | x::xs -> xs

  ...
```
module Stack : STACK = struct
...
 let multipop k s =
 let rec repeat m f x =
 if m=0 then x
 else repeat (m-1) f (f x)
 in repeat k pop s
end
Stacks with multipop

module Stack : STACK = struct

...

let multipop k s =
 let rec repeat m f x =
 if m=0 then x
 else repeat (m-1) f (f x)
 in repeat k pop s
 (* O(min(k, |s|))
 * which is O(n) where n = |s|*)
end
Question

• Start with an initially empty stack
• Do a sequence of STACK operations
• Suppose maximum length stack ever reaches is n
• Suppose (coincidently) that the sequence of operations is of length n
• What is worst-case running time of entire sequence?

A. $O(1)$
B. $O(n)$
C. $O(n \log n)$
D. $O(n^2)$
E. $O(2^n)$
Question

• Start with an initially empty stack
• Do a sequence of STACK operations
• Suppose maximum length stack ever reaches is \(n \)
• Suppose (coincidentally) that the sequence of operations is of length \(n \)
• What is worst-case running time of entire sequence?

A. \(O(1) \)
B. \(O(n) \)
C. \(O(n \log n) \)
D. \(O(n^2) \) possible answer
E. \(O(2^n) \)

Why?
• \(n \) operations
• each is \(O(n) \)
• \(n \times O(n) = O(n^2) \)
...that's correct but pessimistic
Improved analysis of efficiency

• Consider the average cost of each operation in the sequence, still in the worst case
 — "average": arithmetic mean:
 • $T(n)/n$
 • where $T(n)$ is total worst-case cost of n operations
 — "average" here is not "expected value of random variable"
Improved analysis of efficiency

- **Fact**: each value pushed onto stack can be popped off at most once
 - In a sequence of n operations, can't be more than n calls to **push**
 - So can't be more than n calls to **pop**, including calls **multipop** makes to **pop**
 - Each of those calls to **push** and **pop** is $O(1)$
- So worst-case running time of entire sequence is $T(n) = n \times O(1) = O(n)$
 - So $O(n)$ was another possible answer to previous question
- And **average** worst-case running time of each operation in sequence is $T(n)/n = O(n)/n = O(1)$
- This style of analysis is called the *aggregate method*
A monetary analysis

• Real cost:
 – push: $1
 – pop: $1
 – multipop: $\min(k, |s|)

• Let's engage in some "creative accounting"

• Billed cost:
 – push: $2
 – pop: $0
 – multipop: $0

• Fact: we can use billed cost to pay the real cost of any sequence of operations
A monetary analysis

<table>
<thead>
<tr>
<th>Operation</th>
<th>Stack after op</th>
<th>Real cost</th>
<th>Billed cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>push</td>
<td>[x]</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>push</td>
<td>[y;x]</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>pop</td>
<td>[x]</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>push</td>
<td>[z;x]</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>push</td>
<td>[a;z;x]</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>multipop 2</td>
<td>[x]</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>push</td>
<td>[b;x]</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>multipop 3</td>
<td>Empty</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
A monetary analysis

• Cost of **push**:
 – $2 billed
 – use $1 of that to pay the real cost
 – save an extra $1 in that element's "bank account"

• Cost of **pop**:
 – $0 billed
 – use the saved $1 in that element's account to pay the real cost (either raise an exception or take the tail of list)

• Cost of **multipop**:
 – (see **pop**)

• So cost of any operation is **O(1)**
 – Because 2 and 0 are both **O(1)**

• These costs are called *amortized costs*
A monetary analysis

- **Amortized cost of push:**
 - $2 billed
 - use $1 of that to pay the real cost
 - save an extra $1 in that element's "bank account"

- **Amortized cost of pop:**
 - $0 billed
 - use the saved $1 in that element's account to pay the real cost (either raise an exception or take the tail of list)

- **Amortized cost of multipop:**
 - (see pop)

- So amortized cost of any operation is $O(1)$
 - Because 2 and 0 are both $O(1)$

- These costs are called **amortized costs**
Amortized analysis of efficiency

• *Amortize*: put aside money at intervals for gradual payment of debt [Webster's 1964]
 – *L. "mort-" as in "death"
• Pay extra money for some operations as a *credit*
• Use that credit to pay higher cost of some later operations
• a.k.a. *banker's method* and *accounting method*
• Invented by Sleator and Tarjan (1985)
Robert Tarjan

b. 1948

Turing Award Winner (1986) with Prof. John Hopcroft

For fundamental achievements in the design and analysis of algorithms and data structures.

Cornell CS faculty 1972-1973
Another kind of amortized analysis

• Banker's method required tracking credit from sequence of operations

• Alternative idea:
 – determine amount of credit available just from state of data structure, not from its history
 – i.e., "let's ignore history"

• Leads to physicist's method a.k.a. potential method
Physicist's method

• Potential energy: stored energy of position possessed by an object
 – drawn bow
 – stretched spring
 – child on playground at height of swing

• Suppose we have function $U(d)$ giving us the "potential energy" stored in a data structure

• We'll use that stored energy to pay for expensive operations
Physicist's method

• Suppose operation changes data structure from d0 to d1

• Define amortized cost of operation to be
 \[\text{realcost}(\text{op}) + U(d1) - U(d0) \]

• Amortized cost of sequence of two operations
 \[\text{realcost}(\text{op1}) + U(d1) - U(d0) + \text{realcost}(\text{op2}) + U(d2) - U(d1) \]
 \[= \text{realcost}(\text{op1}) + \text{realcost}(\text{op2}) + U(d2) - U(d0) \]

• Amortized cost of sequence of \(n \) operations
 \[[\sum_{i=1..n} (\text{realcost}(\text{op}_i))] + U(d_n) - U(d_0) \]

• **Telescoping sum**: intermediate potentials cancel out; we can ignore them in analysis
A physical analysis

Potential of stack is length of list: \(U(s) = \text{length}(s) \)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Stack after op</th>
<th>Real cost</th>
<th>(U(s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>push</td>
<td>[x]</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>push</td>
<td>[y;x]</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>pop</td>
<td>[x]</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>push</td>
<td>[z;x]</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>push</td>
<td>[a;z;x]</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>multipop 2</td>
<td>[x]</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>push</td>
<td>[b;x]</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>multipop 3</td>
<td>Empty</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>10</td>
<td>---</td>
</tr>
</tbody>
</table>
A physical analysis

• Amortized cost of **push**:
 – real cost is 1
 – change in potential is 1
 • because \(U(x:s) - U(s) = 1 \)
 – so amortized cost is \(2 = O(1) \)
A physical analysis

• Amortized cost of pop:
 – real cost is 1
 – change in potential is –1
 • because \(U(s) - U(x:s) = -1 \)
 – so amortized cost is \(0 = O(1) \)
A physical analysis

• Amortized cost of `multipop`:
 – real cost is \(\min(k, |s|) \)
 – change in potential is also \(-\min(k, |s|) \)
 – so amortized cost is \(0 = O(1) \)

• So amortized cost of any operation is \(O(1) \)
Recap

• Methods of amortized analysis:
 – Aggregate: arithmetic mean
 – Accounting method: monetary charge
 – Potential method: change in potential

• Uses:
 – show that hash tables have constant time efficiency, despite having to grow to incorporate more elements
 – show that 2-3 trees have logarithmic efficiency, despite having to rebalance on insertion/deletion
 – ...
Upcoming events

• [this week] Design review meetings: your responsibility to schedule with assigned consultant

• [Thursday] Prelim 2

This is money.

THIS IS 3110