Efficiency

Prof. Clarkson
Fall 2015

Today’s music: Opening theme from *The Big O*
(THÉ ビッグオ)
by Toshihiko Sahashi
Review

Previously in 3110:
• Reasoning about correctness of programs

Today:
• Reasoning about efficiency of programs
Question

Which of the following would you prefer?

A. $O(n^2)$
B. $O(\log(n))$
C. $O(n)$
D. They're all good
E. I thought this was 3110, not Algo
Question

Which of the following would you prefer?

A. $O(n^2)$
B. $O(\log(n))$
C. $O(n)$
D. They're all good
E. I thought this was 3110, not Algo
Performance

• You've built beautiful, elegant, functional code
• You've organized it into modules with clear specifications
• You've ascertained the correctness of your code through testing or even formal verification

• **Now**, you begin to worry about performance
 – Some part of code is too slow
 – You want to understand the efficiency of a data structure
 – You want to find a more efficient algorithm
What is "efficiency"?

Attempt #1: An algorithm is efficient if, when implemented, it runs quickly on particular input instances

...problems with that?
What is "efficiency"?

Attempt #1: An algorithm is efficient if, when implemented, it runs quickly on particular input instances.

Incomplete list of problems:

- Inefficient algorithms can run quickly on small test cases.
- Fast processors and optimizing compilers can make inefficient algorithms run quickly.
- Efficient algorithms can run slowly when coded sloppily.
- Some input instances are harder than others.
- Efficiency on small inputs doesn't imply efficiency on large inputs.
- Some clients can afford to be more patient than others; quick for me might be slow for you.
Lessons learned from attempt #1

Lesson 1: Time as measured by a clock is not the right metric

- Want a metric that is reasonably independent of hardware, compiler, other software running, etc.
- **idea:** number of steps taken (by dynamic semantics) during evaluation of program
 - steps are independent of implementation details
 - But: each step might really take a different amount of time?
 - creating a closure, looking up a variable, computing an addition
 - in practice, the difference isn't really big enough to matter
Lessons learned from attempt #1

Lesson 2: Running time on particular input instances is not the right metric

- Want a metric that can predict running time on **any** input instance

- **idea:** size of the input instance
 - make metric be a function of input size
 - (combined with lesson 1) specifically, the maximum number of steps for an input of that size
 - But: particular inputs of the same size might really take a different amount of time?
 - multiplying arbitrary matrices vs. multiplying by all zeros
 - in practice, size matters more
Lessons learned from attempt #1

Lesson 3: Quickness is not the right metric

• Want a metric that is reasonably objective; independent of subjective notions of what is fast

• **idea:** beats brute-force search

 – *brute force:* enumerate all the answers one by one, check and see whether the answer is right

 • the simple, dumb solution to nearly any algorithmic problem

 • related idea: guess an answer, check whether correct e.g., bogosort

 – but *by how much* is enough to beat brute-force search?
Lessons learned from attempt #1

Lesson 3: Quickness is not the right metric

• **better idea: polynomial time**

 – (combined with ideas from previous two lessons) can express maximum number of steps as a polynomial function of the size N of input, e.g.,

 • $aN^2 + bN + c$

 – But: some polynomials might be too big to be quick (N^{100})?

 – But: some non-polynomials might be quick enough ($N^{(1+.02*(\log N))}$)?

 – in practice, polynomial time really does work
What is "efficiency"?

Attempt #2: An algorithm is efficient if its maximum number of steps of execution is polynomial in the size of its input.

let's give that a try...
Analysis of running time

\begin{algorithm}
\caption{INSERTION-SORT}(A)
\begin{algorithmic}[1]
\State \textbf{for } $j = 2$ \textbf{to } A.length
\State $\text{key} = A[j]$
\State $\text{// Insert } A[j] \text{ into the sorted sequence } A[1..j-1]$
\State $i = j - 1$
\State $\textbf{while } i > 0 \text{ and } A[i] < \text{key}$
\State $A[i + 1] = A[i]$
\State $i = i - 1$
\State $A[i + 1] = \text{key}$
\end{algorithmic}
\end{algorithm}

\begin{tabular}{|c|c|}
\hline
\textit{cost} & \textit{times} \\
\hline
c_1 & n \\
c_2 & $n - 1$ \\
c_3 & $n - 1$ \\
c_4 & $n - 1$ \\
c_5 & $\sum_{j=2}^{n} t_j$ \\
c_6 & $\sum_{j=2}^{n} (t_j - 1)$ \\
c_7 & $\sum_{j=2}^{n} (t_j - 1)$ \\
c_8 & $n - 1$ \\
\hline
\end{tabular}

The running time of the algorithm is the sum of running times for each statement executed; a statement that takes \(c_i \) steps to execute and executes \(n \) times will contribute \(c_i n \) to the total running time.\[^6\] To compute \(T(n) \), the running time of INSERTION-SORT on an input of \(n \) values, we sum the products of the cost and times columns, obtaining

\[
T(n) = c_1 n + c_2 (n - 1) + c_4 (n - 1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n - 1).
\]

\[^6\] Cormen et al. *Introduction to Algorithms*, 3rd ed, 2009
Precision of running time

• Precise bounds are **exhausting to find**
• Precise bounds are to some extent **meaningless**
 – Are those constants c1..c8 really useful?
 – If it takes 25 steps in high level language, but compiled down to assembly would take 10x more steps, is the precision useful?
 – **Caveat:** if you're building code that flies an airplane or controls a nuclear reactor, you do care about precise, real-time guarantees
Some simplified running times

<table>
<thead>
<tr>
<th>size of input</th>
<th>max # steps as function of N</th>
<th>(N)</th>
<th>(N^2)</th>
<th>(N^3)</th>
<th>(2^N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N=10)</td>
<td></td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
</tr>
<tr>
<td>(N=100)</td>
<td></td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>(10^{17} \text{ years})</td>
</tr>
<tr>
<td>(N=1,000)</td>
<td></td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>18 min</td>
<td>very long</td>
</tr>
<tr>
<td>(N=10,000)</td>
<td></td>
<td>< 1 sec</td>
<td>2 min</td>
<td>12 days</td>
<td>very long</td>
</tr>
<tr>
<td>(N=100,000)</td>
<td></td>
<td>< 1 sec</td>
<td>3 hours</td>
<td>32 years</td>
<td>very long</td>
</tr>
<tr>
<td>(N=1,000,000)</td>
<td></td>
<td>1 sec</td>
<td>12 days</td>
<td>(10^4 \text{ years})</td>
<td>very long</td>
</tr>
</tbody>
</table>

assuming 1 microsecond/step

very long = more years than the estimated number of atoms in universe
Simplifying running times

• Rather than \(1.62N^2 + 3.5N + 8\) steps, we would rather say that running time "grows like \(N^2\)"
 – identify broad classes of algorithm with similar performance
• Ignore the low-order terms
 – e.g., ignore \(3.5N+8\)
 – Why? For big \(N\), \(N^2\) is much, much bigger than \(N\)
• Ignore the constant factor of high-order term
 – e.g., ignore \(1.62\)
 – Why? For classifying algorithms, constants aren't meaningful
 • Code run on my machine might be a constant factor faster or slower than on your machine, but that's not a property of the algorithm
 – Caveat: Performance tuning real-world code actually can be about getting the constants to be small!
• Abstraction to an imprecise quantity
Imprecise abstractions

• OCaml's `int` type is an abstraction of a subset of \(\mathbb{Z} \)
 – don't know which \(\text{int} \) when reasoning about the type of an expression

• ±1 is an abstraction of \{1,-1\}
 – don't know which when manipulating it in a formula

• Here's a new one: Big Ell
 – \(L(e) \) represents a natural number whose value is less than or equal to \(e \)
 – precisely, \(L(e) = \{m \mid 0 \leq m \leq e\} \)
 – e.g., \(L(5) = \{0, 1, 2, 3, 4, 5\} \)
Manipulating Big Ell

• What is 1 + L(5)?
• Trick question!
 – Replace L(5) with set: 1 + {0..5}
 – But + is defined on ints, not sets of ints
• We could distribute the + over the set:
 \{1+0, ..., 1+5\} = \{1..6\}
 – That is, a set of values, one for each possible instantiation of L(5)
• Note that \{1..6\} \subseteq \{0..6\} = L(6)
• So we could say that 1 + L(5) \subseteq L(6)
Question #2

What is $L(2) + L(3)$?

Hint: set of values, one for each possible instantiation of $L(2)$ and of $L(3)$

A. $L(2) + L(3) \subseteq L(2)$
B. $L(2) + L(3) \subseteq L(3)$
C. $L(2) + L(3) \subseteq L(4)$
D. $L(2) + L(3) \subseteq L(5)$
E. $L(2) + L(3) \subseteq L(6)$
Question #2

What is $L(2) + L(3)$?

Hint: set of values, one for each possible instantiation of $L(2)$ and of $L(3)$

A. $L(2) + L(3) \subseteq L(2)$
B. $L(2) + L(3) \subseteq L(3)$
C. $L(2) + L(3) \subseteq L(4)$
D. $L(2) + L(3) \subseteq L(5)$
E. $L(2) + L(3) \subseteq L(6)$
Question #3

What is $L(2) \ast L(3)$?

A. $L(2) \ast L(3) \subseteq L(2)$
B. $L(2) \ast L(3) \subseteq L(3)$
C. $L(2) \ast L(3) \subseteq L(4)$
D. $L(2) \ast L(3) \subseteq L(5)$
E. $L(2) \ast L(3) \subseteq L(6)$
Question #3

What is $L(2) \ast L(3)$?

A. $L(2) \ast L(3) \subseteq L(2)$
B. $L(2) \ast L(3) \subseteq L(3)$
C. $L(2) \ast L(3) \subseteq L(4)$
D. $L(2) \ast L(3) \subseteq L(5)$
E. $L(2) \ast L(3) \subseteq L(6)$
A little trickier...

What is $2^L(3)$?

• $L(3) = \{0..3\}$

• So $2^L(3)$ could be any of
 $\{2^0, \ldots, 2^3\} = \{1, 2, 4, 8\}$

• And $\{1,2,4,8\} \subseteq L(8) = L(2^3)$

• Therefore $2^L(3) \subseteq L(2^3)$

...we can use this idea of Big Ell to invent an imprecise abstraction for running times
Big Oh, take 1

• Recall: we're interested in running time as a function of input size
• Recall: L(e) represents any natural number that is less than or equal to a natural number e
• "New" imprecise abstraction: Big Oh
 – O(g) represents any function that is less than or equal to function g, for every input n.
 – Big Oh is a higher-order version of Big Ell: generalize from naturals to functions on naturals
 – precisely, O(g) = \{f | \forall n, f(n) \leq g(n)\}
 – e.g., O(fun n -> 2n) = \{f | \forall n, f(n) \leq 2n\}
 • (fun n -> n) ∈ O(fun n -> 2n)
 • note: that's a mathematical function written in OCaml notation, not an OCaml function; that's why I'm not putting it in typewriter font
• For simplicity, let's assume function inputs and outputs are non-negative (since input size and running time won't be negative)
Big Oh, take 2

Recall: we want to ignore constant factors

- $O(g)$ represents any function that is less than or equal to function g times some positive constant c, for every input n.

- precisely, $O(g) = \{f \mid \exists c > 0, \forall n, f(n) \leq c \times g(n)\}$

- e.g., $O(\text{fun } \text{n -> } n^3) = \{f \mid \exists c > 0, \forall n, f(n) \leq c \times n^3\}$

- $(\text{fun } \text{n -> } 3\times n^3) \in O(\text{fun } \text{n -> } n^3)$ because $3\times n^3 \leq c \times n^3$, where $c = 3$ (or $c=4, ...$)
Big Oh, take 3

Recall: we care about what happens at scale

fun \(n \rightarrow n^2 \)

fun \(n \rightarrow 2n \)

could just build a lookup table for inputs in the range 0..2
Big Oh, take 3

Recall: we care about what happens at scale

- \(O(g) \) represents any function that is less than or equal to function \(g \) times some positive constant \(c \), for every input \(n \) greater than or equal to some positive constant \(n_0 \).
- Precisely, \(O(g) = \{ f \mid \exists c > 0, n_0 > 0, \forall n \geq n_0, f(n) \leq c \cdot g(n) \} \)
- E.g., \(O(\text{fun n -> n}^2) = \{ f \mid \exists c > 0, n_0 > 0, \forall n \geq n_0, f(n) \leq c \cdot n^2 \} \)
 - (\text{fun n -> 2n}) \in O(\text{fun n -> n}^2)
 because \(2n \leq c \cdot n^2 \), where \(c = 2 \), for all \(n \geq 1 \)
The important, final definition you should know:

\[
O(g) = \{f \mid \text{exists } c > 0, n_0 > 0, \forall n \geq n_0, f(n) \leq c \times g(n)\}
\]
Instead of
\[O(g) = \{ f \mid \ldots \} \]
most authors write
\[O(g(n)) = \{ f(n) \mid \ldots \} \]

- They don't really mean \(g \) applied to \(n \); they mean a function \(g \) parameterized on input \(n \) but not yet applied
- Maybe they never studied functional programming 😊
Big Oh Notation: Warning 2

Instead of

\[(\text{fun } n \rightarrow 2n) \in O(\text{fun } n \rightarrow n^2)\]

all authors write

\[2n = O(n^2)\]

• Your instructor has always found this abusage distressing

• Yet henceforth he will follow the convention 😊
 – The standard defense is that = should be read here as "is" not as "equals"
 – Be careful: one-directional equality!
A Theory of Big Oh

• reflexivity: \(f = O(f) \)
• (no symmetry condition for Big Oh; there is one for Big Theta)
• transitivity: \(f = O(g) \land g = O(h) \implies f = O(h) \)
• \(c \cdot O(f) = O(f) \)
• \(O(c \cdot f) = O(f) \)
• \(O(f) \cdot O(g) = O(f \cdot g) \)
 — where \(f \cdot g \) means (fun n -> f(n)*g(n))
• ...

Useful to know these equalities so that you don't have to keep re-deriving them from first principles
What is "efficiency"?

Final attempt: An algorithm is efficient if its worst-case running time is $O(N^d)$ for some constant d and for input size N.
Running times of some algorithms

- \(O(1) \): constant: access an element of an array (of length \(n \))
- \(O(\log n) \): logarithmic: binary search through sorted array of length \(n \)
- \(O(n) \): linear: maximum element of list of length \(n \)
- \(O(n \log n) \): linearithmic: mergesort a list of length \(n \)
- \(O(n^2) \): quadratic: bubblesort an array of length \(n \)
- \(O(n^3) \): cubic: matrix multiplication of \(n \)-by-\(n \) matrices
- \(O(2^n) \): exponential: enumerate all integers of bit length \(n \)

...some of these are not obvious, require proof
Upcoming events

• [today] A5 due, including Async and design phase of project
• [in next week] Design review meetings
• [next Thursday] Prelim 2

This is efficient.

THIS IS 3110