

Prof. Clarkson Fall 2015

Today's music: *Nice to know you* by Incubus

Would you like a tiny bonus to your final grade for being here on time today?

- A. Yes
- B. Sí
- C. Hai
- D. Haan
- E. Naam

Review

Previously in 3110:

- Behavioral equivalence
- Proofs of correctness by induction on naturals, lists, trees, ...

Today:

Verify that a function implementation satisfies its specification

Specification vs. Implementation

Specification ("spec"):

```
(* [max x y] is the maximum of [x] and [y]. *)
val max : int -> int -> int
```

Implementation:

```
let max x y = if x>=y then x else y
```

```
(* postcondition: ...
  precondition: ... *)
val f: t1 -> t2
```

- Postcondition: guaranteed to be true of value returned by function
- Precondition: must be true of value passed to function as argument

Choices of how to write specification comment for max's precondition:

```
omitprecondition: none.requires: nothing.assumes: nothing....
```

Choices of how to write specification comment for max's postcondition:

```
    [max x y] is the maximum of [x] and [y].
```

- postcondition: [max x y] is the maximum of [x] and [y].
- returns: [max x y] is the maximum of [x] and [y].
- ensures: [max x y] is the maximum of [x] and [y].
- •

Verification

- Verification: prove that implementation satisfies specification
- Proof gets to assume precondition
- Proof has to establish that postcondition holds
 - Might use behavioral equivalence
 - Might use structural induction

— ...

Which of the following defines "maximum"?

- A. $(\max x y) >= x \text{ and } (\max x y) >= y$
- B. $(\max x y) = x \text{ or } (\max x y) = y$
- C. The conjunction of A and B
- D. None of the above

Which of the following defines "maximum"?

- A. $(\max x y) >= x \text{ and } (\max x y) >= y$
- B. $(\max x y) = x \text{ or } (\max x y) = y$
- C. The conjunction of A and B
- D. None of the above

Let's give a proof that **max** satisfies its specification...

```
Theorem:
(\max x y) \ge x \text{ and } (\max x y) \ge y
  and (\max x y = x) or (\max x y = y)
Proof: by case analysis
Case: x \ge y
  Note that max x y \sim x,
    because max x y -->* x when x >= y.
  Substituting x for (max x y) in the theorem,
    we have x \ge x and x \ge y and (x=x \text{ or } x=y).
    By math and the assumption that x \ge y,
    that holds.
```

```
Theorem:
(\max x y) \ge x \text{ and } (\max x y) \ge y
  and (\max x y = x) or (\max x y = y)
Proof: by case analysis
Case: x < y
  Note that \max x y \sim y,
    because max x y \longrightarrow y when x < y.
  Substituting y for (max x y) in the theorem,
    we have y \ge x and y \ge y and (y=x \text{ or } y=y).
    By math and the assumption that x < y,
    that holds.
```

```
Theorem:
(\max x y) >= x \text{ and } (\max x y) >= y
  and (\max x y = x) or (\max x y = y)
Proof: by case analysis
Case: x \ge y
Case: x < y
```

Those two cases are exhaustive.

QED

Another implementation of max

```
(* (max' x y) >= x and (max' x y) >= y
        and (max' x y = x) or (max' x y = y) *)
let max' x y = (abs(y-x)+x+y)/2

(* returns: abs x is x if x>=0, otherwise -x *)
val abs : int -> int
```

Modular verification: use only the specs of other functions, not their implementations

But if we don't have code, can't use ~ and eval...

(in this case we could appeal to math, but we won't)

Instead use specification!

Specifications, in general

```
(* postcondition: f x is z where R(z)
   precondition : Q(x) *)
val f: t1 -> t2
e.g.
(* returns: abs x is z where z=x if x>=0,
     otherwise z=-x *)
val abs : int -> int
R(z) = z=x \text{ or } z=-x \text{ and } z>=0
Q(x) = true
```

Using specifications in proofs

```
(* postcondition: f x is z where R(z)
  precondition: Q(x) *)
val f: t1 -> t2
```

New axiom: specification

```
if Q(x) and f is total
then there exists z such that
  f x ~ z and R(z)
```

This axiom introduces an assumption about f that might not be warranted: someone should also verify f!

Theorem:

```
(max' x y) \ge x and (max' x y) \ge y
  and (\max' x y = x) or (\max' x y = y)
Proof: by case analysis
Case: y-x >= 0 equiv. y >= x
  Note that abs(y-x) \sim y-x by specification
    and by assumption that y \ge x.
  So max' x y ~ (y-x + x + y)/2 ~ (y+y)/2 ~ y.
  Substituting y for (max x y) in the theorem,
    we have y \ge x and y \ge y and (y=x \text{ or } y=y).
    By math and the assumption that y \ge x,
    that holds.
```

```
Theorem:
(max' x y) \ge x and (max' x y) \ge y
  and (\max' x y = x) or (\max' x y = y)
Proof: by case analysis
Case: y-x < 0 equiv. y < x
  Note that abs(y-x) \sim x-y by specification, math,
    and by assumption that y < x.
  So max' x y ~ (x-y + x + y)/2 ~ (x+x)/2 ~ x.
  Substituting x for (max x y) in the theorem,
    we have x \ge x and x \ge y and (x=x \text{ or } x=y).
    By math and the assumption that y < x,
    that holds.
```

```
Theorem:
(max' x y) >= x and (max' x y) >= y
  and (max' x y = x) or (max' x y = y)
Proof: by case analysis
Case: y-x >= 0
Case: y-x < 0
```

Those two cases are exhaustive.

```
# max' max int 0;;
-: int = -1
(abs(0-max int)+max int+0)/2
(abs(-max int)+max int)/2
(max int+max int)/2
-2/2
=
-1
```

What went wrong?

- A. There's a bug in our proof
- B. There's a bug in our specification of max
- C. There's a bug in our specification of abs
- D. There's a bug in our implementation
- E. Something else

What went wrong?

- A. There's a bug in our proof
- B. There's a bug in our specification of max
- C. There's a bug in our specification of abs
- D. There's a bug in our implementation
- E. Something else (mainly this)

We agreed to ignore the limits of machine arithmetic...

Machine arithmetic

```
(* requires: min_int <= x ++ y <= max_int *)
val (+) : int -> int -> int

(* requires: min_int <= x -- y <= max_int *)
val (-) : int -> int -> int
```

where ++ and -- denote the "ideal" math operators

- in counterexample, we attempt to compute max int+max int
- so our implementation of max ' doesn't guarantee those preconditions hold when it calls (+) and (-)
- we could add a precondition to max ' to rule out that behavior...

Corrected spec for max'

Proof: omitted. OED

```
(* returns: a value z s.t.
      z > = x and z > = y and (z = x \text{ or } z = y)
 * requires: min int/2 <= x <= max int/2
         and min int/2 \leq y \leq max int/2 *)
let max' x y = (abs(y-x)+x+y)/2
Theorem:
if min int/2 <= x <= max_int/2
  and min int/2 \ll y \ll max int/2
then max' x y >= x and max' x y >= y
  and (max' x y = x or max' x y = y)
```

Verified max' vs max

max' assumes more about its input than max does ...max' has a stronger precondition

Strength of preconditions

Given two preconditions PRE1 and PRE2 such that PRE1 => PRE2

- (and PRE1 not logically equivalent to PRE2)
- e.g., x>1 => x>0
- PRE1 is stronger than PRE2:
 - assumes more
 - function can be called under fewer circumstances
- PRE2 is weaker than PRE1:
 - assumes less
 - function can be called under more circumstances
- The weakest possible precondition is to assume nothing, but that might make implementation difficult
- The strongest possible precondition is to assume so much that the function can never be called

Verified max' vs max

max' assumes more about its input than max does ...max' has a stronger precondition

...max' can be called under fewer circumstances; maybe less useful to clients

Strength of postconditions

Given two postconditions POST1 and POST2 such that POST1 => POST2

- (and POST1 not logically equivalent to POST2)
- e.g., returns a stably-sorted list => returns a sorted list
- POST1 is stronger than POST2:
 - promises more
 - function result can be used under more circumstances
- POST2 is weaker than POST1:
 - promises less
 - function result can be used under fewer circumstances
- The weakest possible postcondition is to promise nothing
- The strongest possible postcondition is to promise so much that the function could never be implemented

Which is the stronger postcondition for **find**?

Which is the stronger postcondition for **find**?

- Suppose a client gives us a spec to implement.
- Could we implement a function that meets a different spec, verify that implementation against that other spec, and still make the client happy?
- Analogy: In Java, if you're asked to implement a function that returns a List, could you instead return
 - an Object?
 - an ArrayList?

- If a client asked for A, could we give them B?
- If a client asked for B, could we give them A?

- If a client asked for A, could we give them B? Yes.
- If a client asked for B, could we give them A? No.

- If a client asked for C, could we give them D?
- If a client asked for D, could we give them C?

- If a client asked for C, could we give them D? Yes.
- If a client asked for D, could we give them C? No.

Suppose a client gives us a spec to implement:

requires: PRE

returns: POST

Which of the following could we instead implement and still satisfy the client?

- A. Weaker PRE and weaker POST
- B. Weaker PRE and stronger POST
- C. Stronger PRE and weaker POST
- D. Stronger PRE and stronger POST
- E. None of the above

Suppose a client gives us a spec to implement:

requires: PRE

returns: POST

Which of the following could we instead implement and still satisfy the client?

- A. Weaker PRE and weaker POST
- B. Weaker PRE and stronger POST i.e., assume less and promise more
- C. Stronger PRE and weaker POST
- D. Stronger PRE and stronger POST
- E. None of the above

Refinement

Specification B *refines* specification A if any implementation of B is also an implementation of A

- Any implementation of "find first" is an implementation of "find any", so "find first" refines "find any"
- Any implementation of "max" is an implementation of "max of small ints", so "max" refines "max of small ints"

How can we verify that SPEC2 refines SPEC1?

- Need to prove that PRE1 => PRE2
 i.e., PRE2 is weaker than (or equivalent to) PRE1
- and that POST2 => POST1
 ie., POST2 is stronger than (or equivalent to) POST1

Refinement and exercises

- We give you a SPEC1 for an exercise
- You refine that to a new SPEC2
 - Weaken the precondition or strengthen the postcondition
- You submit an implementation of SPEC2
- By the definition of refinement, any implementation of SPEC2 is an implementation of SPEC1
 - − so you are [©]
- But if you incorrectly refine the spec, then you are 😊
 - (strengthen the precondition or weaken the postcondition)

Refinement and exercises

- We give you a SPEC1 for an exercise
- You implement that
 - You are ☺
- We post a refined SPEC2 on Piazza.
 - Weakens precondition or strengthens postcondition
- An implementation of SPEC1 is not necessarily an implementation of SPEC2!
 - You are ☺
- Which is why one of my commandments to TAs is "Don't refine the spec."
- And why I tell you, "This is unspecified; do something reasonable."

Proof

- We worked only somewhat formally today
 - Wrote formulas involving and, or, =>
 - How do we know we got it right?
- Formal verification: checked by machine
 - maybe machine generates the proof
 - maybe machine only checks the proof
- For that, we need *formal logic* (see CS 4860) and *proof assistants* and maybe special purpose logics for reasoning about programs (see CS 4110)

Upcoming events

 [Thursday] A5 due, including Async and design phase of project

This is specified.

THIS IS 3110