
Data Structures and Functional Programming Problem Set 4
CS 3110, Spring 2014 Thursday, March 20
Version: 1 Last Modified: March 13, 2014

Overview

In this assignment you will implement several functions over infinite streams of data, an algo-
rithm for inferring types, and an interpreter for CS3110Caml, a simple functional language.

Objectives

• Develop representations of infinite streams and gain experience with lazy evaluation.

• Implement an interpreter for a simple functional language.

• Build a simple type inference engineering using unification.

• Gain familiarity with implementing pattern matching and exhaustiveness checking.

Recommended reading

The following supplementary materials may be helpful in completing this assignment:

• Lecture 13

• Real World OCaml, Chapters 1-10

What to turn in

You should submit your solutions in files streams.ml, eval.ml, infer.ml, and unify.ml. Any comments
you wish to make can go in comments.txt or comments.pdf. If you choose to submit any Karma
work, you may submit the file karma.ml (be sure to describe what you’ve done in the comments
file).

1

http://www.cs.cornell.edu/Courses/cs3110/2014sp/lectures/13/the-environment-model.html
https://realworldocaml.org/v1/en/html/index.html

Lazy Evaluation

A stream is an infinite sequence of values. We can model streams in OCaml using the type

type ’ a stream = Stream of ’ a * (un i t -> ’ a stream)

Intuitively, the value of type ’a represents the current element of the stream and the
unit -> ’a stream is a function that generates the rest of the stream.

“But wait!” you might ask, “why not just use a list?” It’s a good question. We can create
arbitrarily long finite lists in OCaml and we can even make simple infinite lists. For example:

l e t r ec sevens = 7 : : sevens ; ;
va l sevens : i n t l i s t =

[7 ; 7 ; 7 ; 7 ; 7 ; 7 ; . . .]

However, there are some issues in using these lists. Long finite lists must be explicitly repre-
sented in memory, even if we only care about a small piece of them. Also most standard func-
tions will loop forever on infinite lists:

l e t e i g h t s = L i s t . rev_map ((+) 1) sevens ; ;
(l oops f o r e v e r)

In contrast, streams provide a compact, and space-efficient way to represent conceptually in-
finite sequences of values. The magic happens in the tail of the stream, which is evaluated
lazily—that is, only when we explicitly ask for it. Assuming we have a function
map_str : (’a -> ’b) -> ’a stream -> ’b stream that works analogously to List .map and a stream sevens_str,
we can call

l e t e i gh t s_s t r = map_str ((+) 1) sevens_str ; ;
va l e i gh t s_s t r : i n t stream

and obtain an immediate result. This result is the stream obtained after applying the map func-
tion to the first element of sevens_str. Map is applied to the second element only when we ask
for the tail of this stream.

In general, a function of type (unit -> ’a) is called a thunk. Conceptually, thunks are expres-
sions whose evaluation has been delayed. We can explicitly wrap an arbitrary expression (of
type ’a) inside of a thunk to delay its evaluation. To force evaluation, we apply the thunk to a
unit value. To see how this works, consider the expression

l e t v = f a i l w i t h " yo lo " ; ;
Exception : Fa i l u r e " yo lo "

which immediately raises an exception when evaluated. However, if we write

l e t lazy_v = fun () -> f a i l w i t h " yo lo " ; ;
va l v : un i t -> ’ a = <fun>

then no exception is raised. Instead, when the thunk is forced, we see the error

v () ; ;
Exception : Fa i l u r e " yo lo "

In this way, wrapping an expression in a thunk gives rise to lazy evaluation.

2

Manipulating Streams

To specify a stream, we need to be able to determine how to generate its elements. One way to
construct a stream is to use a function of the type

unfo ld : (’ a -> ’b * ’ a) -> ’ a -> ’b stream

In contrast to List . fold_left and List .fold_right, which take a list and produce a value, the unfold
function takes a generator function and a seed. The generator function tells us how to generate
the next stream element and the next seed. As an example, we can create the stream of all
natural numbers using

l e t nats = unfo ld (fun x -> x , succ x) 0

It is often easier to use two functions:

1. a function gen_head : ’a -> ’b that tells us how to construct a new element of the stream
from a seed, and

2. a function gen_seed : ’a -> ’a that tells us how to construct the next seed.

This idea is captured in the function

univ : (’ a -> ’b) * (’ a -> ’ a) -> ’ a -> ’b stream

We can use this function to construct the natural numbers via

l e t nats = univ ((fun x -> x) , succ) 0

Either way, we obtain a data structure that represents all of the natural numbers in a compact
way.

Exercise 1:

Implement the unfold function as described above. More details can be found in the documen-
tation.

Implementing Stream Functions

In each of the following exercises you may not use the rec keyword. Instead, you should use the
univ function to create and manipulate streams.

Exercise 2:

• Implement a function

repeat : ’ a -> ’ a stream

that produces a stream whose elements are all equal to x.

3

• Implement a function

map : (’ a -> ’b) -> ’ a stream -> ’b stream

that (lazily) applies the input function to each element of the stream.

• Implement a function

diag : ’ a stream stream -> ’ a stream

that takes a stream of streams of the form

s0,0 s0,1 s0,2 · · ·
s1,0 s1,1 s1,2 · · ·
s2,0 s2,1 s2,2 · · ·

...
...

...
. . .

and returns the stream containing just the diagonal elements

s0,0s1,1s2,2 · · ·

• Write a suffixes function

s u f f i x e s : ’ a stream -> ’ a stream stream

that takes a stream of the form

s0 s1 s2 s3 s4 · · ·

and returns a stream of streams containing all suffixes of the input

s0 s1 s2 · · ·
s1 s2 s3 · · ·
s2 s3 s4 · · ·
...

...
...

. . .

• Implement a function

i n t e r l e a v e : ’ a stream -> ’ a stream -> ’ a stream

that takes two streams s0s1 · · · and t0t1 · · · as input and returns the stream

s0t0s1t1s2t2 · · ·

4

Creating Infinite Streams

Exercise 3:

In this exercise you will create some interesting infinite streams.

• The Fibonacci numbers ai can be specified by the recurrence relation a0 = 0, a1 = 1 and
an = an−1+an−2. Create a stream fibs : int stream whose nth element is the nth Fibonacci
number.

• The irrational number π can be approximated via the formula

π= 4
∞∑

n=0

(−1)n

2n +1
.

Write a stream pi : float stream whose nth element is the nth partial sum in the formula
above.

• The look-and-say sequence ai is defined recursively – a0 = 1 and an is generated from
an−1 by reading off the digits of an−1 as follows: for each consecutive sequence of identical
digits, pronounce the number of consecutive digits and the digit itself. For example:

– the first element is the number 1,

– the second element is 11 because the previous element is read as “one one”,

– the third element is 21 because 11 is read as “two one”,

– the fourth element is 1211 because 21 is read as “one two, one one”,

– the fifth element is 111221 because 1211 is read as “one one, one two, two one”.

Write a stream look_and_say : int list stream whose nth element is a list containing the dig-
its of an ordered from most significant to least significant.

5

Lexing

Parsing

Type Checking

Evaluation

app

fun

x x

+

37 5

(a) (b)

Figure 1: (a) Interpreter stages; (b) Abstract syntax tree for a simple expression

OCaml Interpreter

In this part of this assignment, you will implement an interpreter for a subset of OCaml called
3110Caml. This will provide functionality similar to the top-level loop we have been using for
much of the semester.

Overview

An interpreter is a program that takes a source program and computes the result described by
the program. An interpreter differs from a compiler in that it carries out the computations itself
rather than emitting code which implements the specified computation.

A typical interpreter is implemented in several stages (see Figure 1 (a)):

1. Lexing: the interpreter splits the input program into tokens.

2. Parsing: the interpreter takes the list of tokens and converts it into an abstract syntax tree
(AST) according to the grammar of the language.

3. Type checking: the interpreter verifies that the program is well-formed according to the
type system for the language—e.g. the program does not contain expressions such as
3 + true.

4. Evaluation: the interpreter evaluates the AST into a final value (or diverges).

As an example given the 3110Caml program (fun x -> x) (37+5), the lexer would produce a
stream of tokens:

6

(fun x -> x) (37 + 5)

The parser would produce the syntax tree shown in Figure 1 (b); the type checker would suc-
ceed, and evaluation would proceed as follows:

(fun x -> x) (37+5)→ (fun x -> x) 42→ 42

We have provided you with a type Ast.expr that represents abstract syntax trees, as well as a lexer
and parser that transforms into strings into ASTs1. Your task will be to implement type checking
and evaluation.

Interacting with the Interpreter

Our 3110Caml interpreter is similar to the OCaml toplevel. To run the interpreter, type2

> cs3110 compile main . ml
> cs3110 run main . ml

You should see a list of commands followed by the prompt

zardoz #

You can then type expressions in to be evaluated by your interpreter. Unlike the OCaml toplevel,
the 3110Caml interpreter only accepts one line expressions and you do not have to terminate
expressions with the ;; . Here is a sample toplevel session:

zardoz # 1729
- : i n t = 1729
zardoz # fun x -> x
- : ’ a -> ’ a = <fun>
zardoz # l e t f = fun x -> x+1 in f 3109
- : i n t = 3110
zardoz # match [1 7 ; 1 7 2 9 ; 5 0 4 0] with [] -> f a l s e | x : : xs -> true
- : bool = true

Our Subset of OCaml

The interpreter you will build will support a small but expressive subset of OCaml. 3110Caml
has been carefully designed to help you understand the fundamentals of building an interpreter
for a functional language without getting bogged down in some of the more complicated fea-
tures of OCaml.

1If you are interested in understanding how these work, you may consult the Parser directory and check out the
ocamlyacc parser generator.

2 To improve your 3110Caml toplevel experience you may wish to install the rlwrap package and instead run
rlwrap cs3110 run main.ml. This will enable you to use the arrow keys within the interpreter.

7

Values

3110Caml has five basic types of values:

1. Integers, which correspond to the OCaml type int;

2. Booleans, which correspond to the OCaml type bool;

3. Closures, which represent a functions and the variables in its scope;

4. Unit;

5. Lists.

Note that the interpreter does not support strings, tuples, or user-defined data types.

In addition, we will use a sixth internal value VUndef for creating recursive definitions. This
value is not recognized by the parser and so is available to the programmer. You should ensure
that your interpreter never evaluates an expression to VUndef (by raising an exception). When
an expression is evaluated successfully, the result should have type Ast.value. Consult the docu-
mentation for more information.

Expressions

3110Caml supports a rich collection of expressions including let bindings, anonymous func-
tions, conditionals, and match statements. The following code, taken from ast .ml, defines the
expr type.

type expr =
Constant o f constant

| BinaryOp o f binary_op * expr * expr
| UnaryOp o f unary_op * expr
| Var o f id
| Fun o f id * expr
| Cons o f expr * expr
| I fThenElse o f expr * expr * expr
| Let o f id * expr * expr
| LetRec o f id * expr * expr
| App o f expr * expr
| Match o f expr * (pattern * expr) l i s t

Note that 3110Caml supports pattern matching. However, because it does not support user-
defined types, pattern matching here is mostly useful for deconstructing lists. Consequently, a
pattern is either a constant, a variable, or a cons of two patterns:

type pattern =
| PConstant o f constant
| PVar o f id
| PCons o f pattern * pattern

8

If a given match expression does not match any of the patterns in a match expression, the pat-
tern matching is said to be inexhaustive. Your implementation is not responsible for statically
detecting inexhaustive match cases and should therefore throw an exception if pattern match-
ing fails at run-time.

Roadmap

To complete this part of the assignment, you will have to implement the three core processes
outlined above: evaluation, type annotation, and unification as outlined in the following exer-
cises.

Exercise 4:

In this exercise you will implement the evaluation step of the interpreter, which is taken care of
in the file eval.ml. In particular, you are responsible for the following:

a) Implement the function

eva l : Ast . expr -> Ast . environment -> Ast . va lue

which evaluates 3110Caml expressions as prescribed by the environment model. More de-
tails on precisely how this is implemented can be found in these notes.

b) Implement the function

pattern_match : Ast . va lue -> Ast . pattern -> bool * Ast . environment

which determines dynamically (i.e. at runtime) whether or not a given value matches a par-
ticular pattern. This function should match your intuitive notion of how pattern matching
works, but more precise information can be found in the documentation.

Exercise 5:

This exercise you will cover the type annotation phase of the interpreter, the first step in type
inference. You are responsible for

a) Implementing the function

va l annotate : Ast . expr -> (Ast . id , Ast . typ) Hashtbl . t -> Ast . aexpr

which annotates a given expression with proper type variables. The second argument is the
type context, i.e. a mapping from the type variables to their associated types. In order to
complete type annotation, you will also need to fill in the partially implemented function
function annotate_op, a helper function that annotates the unary and binary operators.

The details of type annotation are explained in further detail later in this document as well
as in the the documentation

9

http://www.cs.cornell.edu/Courses/cs3110/2014sp/lectures/13/the-environment-model.html
http://www.cs.cornell.edu/courses/cs3110/2014sp/hw/4/doc/index.html
http://www.cs.cornell.edu/courses/cs3110/2014sp/hw/4/doc/index.html

b) In addition, implement the function

c o l l e c t : Ast . aexpr l i s t -> Ast . cons t r l i s t -> Ast . cons t r l i s t

which generates a list of constraints for unification, given an input expression. As with
annotate, you will also need to complete the partially implemented function
collect_operator_constraints, which collects the constraints from the unary and binary opera-
tors

The details of how these constraints are generated is outlined below, as well as in
the documentation.

You will find the functions for this exercise in the file infer.ml.

Exercise 6:

In this exercise, you will complete type inference by implementing the function

un i fy : Ast . cons t r l i s t -> Ast . s ub s t i t u t i o n

in unify.ml. This function solves for a satisfying assignment of the type variables in the input
constraint list. Further details on the unification algorithm can be found below.

Moving Forward

The remainder of this document outlines each of the above processes in greater detail to aid
you in your implementation. Be sure to also consult the documentation for helper functions
and modules that you may find useful in your implementation.

Implementing Type Inference

Type inference refers to the process of assigning types to expressions. Your interpreter will im-
plement type inference in two stages:

1. Type annotation

2. Unification

Type annotation takes an expression as input and constructs an explicitly typed expression by
analyzing the structure of the term. Unification takes two types as input and constructs a sub-
stitution that, when applied, makes the types equal, or fails if no substitution exists.

10

http://www.cs.cornell.edu/courses/cs3110/2014sp/hw/4/doc/index.html
http://www.cs.cornell.edu/courses/cs3110/2014sp/hw/4/doc/index.html

Type Annotation

Consider the OCaml program

(fun x y z -> i f x (y * y) then z e l s e x y)

Intuitively, we can infer the types of the expressions as follows:

• Because y is used in multiplication it must be of type int.

• Moreover, because x is applied to the argument (y * y) it must be some function. Then,
because the output of the application is used in the conditional clause to an if statement,
it must be of type bool. Consequently, x must have type int -> bool.

• Finally, z is used as the output of the if expression and therefore must have the same type
as the output of the else expression, which is the output of x, i.e. bool.

Putting all these pieces together, the annotated expression would be

fun (x : i n t -> bool) (y : i n t) (z : bool) -> bool

The goal of type annotation is to formalize the above process and produce a set of equations
between types that, if satisfiable, can be used to determine a type for the expression. We will
call such annotations constraints.

During type annotation function, we will need to work with expressions containing type vari-
ables. Hence, we will introduce a context Γ to keep track of the current assignments of type
variables to other types. Such a context can be represented concretely by a Hashtbl mapping
identifiers to types. Hence, the overall type of annotate is as follows:

annotate : Ast . expr -> (Ast . id , Ast . typ) Hashtbl . t -> Ast . aexpr

The Ast.expr is the program to be annotated and the Hashtbl.t is the type context Γ. A detailed
view of the rules for calculating constraints can be found in the documentation.

Unification

After annotation, we have an annotated expression, as well as a set of constraints between types
that must be satisfied for the expression to be well-typed. To solve these constraints, we will use
unification.

Consider the equation ’a -> (’a -> int) = int -> ’b. To unify this equation, we must find valid
types to replace ’a and ’b with. The substitution that maps [(’ a7→ int); (’b 7→int->int)] does
this—we say this mapping unifies the constraint equation. Your task in this problem set is to
implement the unification algorithm that generates such a mapping.

The solution, or mapping, that unifies the constraint equations is called a type substitution.
(We really care about the case of substituting type variables with types, but note that type vari-
ables ’a and ’b are types just as well as int.) Formally, a function σ is a type substitution if it

11

satisfies the following properties:

σ(c) = c if c is a constant type,

σ(x) =
{
τ if x 7→ τ ∈σ
x if x 6∈ dom(σ)

,

σ(τ→ τ′) =σ(τ) →σ(τ′),

σ(τ l i st) =σ(τ) l i st .

The algorithm to find such a substitution is given in the following diagram. Translate it to
OCaml and you will have completed this section of the assignment.

Algorithm 1: Unification

input : A set C of constraints of the form τ= τ′.
output: A substitution, σ satisfying C , if one exists and an error otherwise
if C =; then

return []

else
(τ= τ′)∪C ′ ←C
case τ= τ′

return unify(C ′)
case τ= x and x is not a free variable of τ′.

return unify(C ′{τ′/x})◦ [x 7→ τ′]
case τ′ = x and x is not a free variable of τ.

return unify(C ′{τ/x})◦ [x 7→ τ]

case τ= τ0 → τ1 and τ′ = τ′0 → τ′1
return unify(C ′∪ {τ0 = τ′0,τ1 = τ′1})

case τ= τ0 list and τ′ = τ′0 l i st
return unify(C ′∪ {τ0 = τ′0})

case otherwise
return An error indicating that the unification failed.

A word on notation: the composition operator ◦ is used to combine two substitutions, C {τ/x}
means “replace all unbound occurences of x with τ within C ”, [x 7→ τ] represents the function
(that is, type substitution) σ that maps variable x to type τ, and ∪ is used to combine two sets
of constraint equations.

12

Example of Type inference

Consider the expression from the type annotation section above:

(fun x y z -> i f x (y * y) then z e l s e x y)

We start with an pure expr AST and convert it to an annotated one, as shown below:

fun

x fun

y fun

z if

app

x *

y y

z app

x y

fun : ’a -> ’b -> ’c -> ’c

x fun : ’b -> ’c -> ’c

y fun : ’c -> ’c

z if : ’c

app : ’d

x : ’a * : int

y : ’b y : ’b

z : ’c app : ’e

x : ’a y : ’b

Figure 2: The annotation phase of type inference.

The above annotated AST should generate the following set of constraints:{
’a = ’b -> ’c; ’b = int; ’a = int -> ’d; ’c = ’e; ’d = bool

}
We would then apply unification to the above constraints to generate the substitution

σ= {
(’a 7→ int -> bool); (’b 7→ int); (’ c 7→ ’e); (’d 7→ bool) (’ e 7→ bool)

}
We then apply the substitution to get the final annotated AST:

13

fun : (int -> bool) -> int -> bool -> bool

x fun : int -> bool -> bool

y fun : bool -> bool

z if : bool

app : bool

x : int -> bool * : int

y : int y : int

z : bool app : bool

x : int -> bool y : bool

Figure 3: Final annotated AST after unification.

Unification may seem confusing at first, but we encourage you not to overthink it. You know
how to solve these problems! This algorithm is similar to ones you have been solving all semester.
It is just the formal, algorithmic process that OCaml uses to check for type errors.

Comments

We would like to know how this assignment went for you. Were there any parts that you didn’t
finish or wish you had done in a better way? Which parts were particularly fun or interesting?
Did you do any Karma problems?

Karma suggestions

• Implement exhaustiveness checking for pattern matching.

• Extend your interpreter with pairs, or other data types.

14

