Lecture 24: Efficiency

Prof. Clarkson
Fall 2014

Today’s music: Opening theme from *The Big O* (THE ビッグオ) by Toshihiko Sahashi
And a bonus: Pokémon Theme
Review

Course so far:
• Introduction to functional programming
• Modular programming
• Advanced topics in functional programming
• Reasoning about correctness

Next:
• Reasoning about performance
• Today:
 – What it means to be efficient
Question #1

Which is your favorite Steammon?

A. Blastoise
B. Mewtwo
C. Pikachu
D. Charizard
E. What's a Steammon?
Performance

• You've built beautiful, elegant, functional code
• You've organized it into modules with clear, sufficiently general, sufficiently restrictive specifications
• You've established assurance through a combination of testing and verification
• Finally, you begin to worry about performance
 – Some part of code is too slow
 – You want to find a more efficient algorithm
What is "efficiency"?

Attempt #1: An algorithm is efficient if, when implemented, it runs quickly on particular input instances

...problems with that?
What is "efficiency"?

- **Attempt #1:** An algorithm is efficient if, when implemented, it runs quickly on particular input instances.
- **Problems:**
 - Inefficient algorithms can run quickly on small test cases.
 - Fast processors and optimizing compilers can make inefficient algorithms run quickly.
 - Good algorithms can run slowly when coded sloppily.
 - Some input instances are harder than others.
 - Efficiency on small inputs doesn't imply efficiency on large inputs.
 - Some clients can afford to be more patient than others; quick for me might be slow for you.
Lessons learned from attempt #1

Lesson 1: Time as measured by a clock is not the right metric

- Want a metric that is reasonably independent of hardware, compiler, other software running, etc.
- **idea:** number of steps taken by dynamic semantics during evaluation of program
 - steps are independent of implementation details
 - each step might really take a different amount of time?
 - creating a closure, looking up a variable, computing an addition
 - in practice, the difference isn't really big enough to matter
Lessons learned from attempt #1

Lesson 2: Running time on particular input instances is not the right metric

- Want a metric that can predict running time on any input instance
- **idea**: size of the input instance
 - make metric be a function of input size
 - (combined with lesson 1) specifically, the maximum number of steps for an input of that size
 - particular inputs of the same size might really take a different amount of time?
 - multiplying arbitrary matrices vs. multiplying by all zeros
 - in practice, size matters more
Lessons learned from attempt #1

Lesson 3: Quickness is not the right metric

– Want a metric that is reasonably objective; independent of subjective notions of what is fast

– idea: beats brute-force search

 • enumerate all the answers one by one, check and see whether the answer is right
 – the simply, dumb solution to nearly any algorithmic problem
 – related idea: guess an answer, check whether correct e.g., bogosort

 • but by how much is enough to beat brute-force search?
Lessons learned from attempt #1

Lesson 3: Quickness is not the right metric

– Want a metric that is reasonably objective; independent of subjective notions of what is fast

– **better idea:** polynomial time

• (combined with ideas from previous two lessons)
 can express maximum number of steps as a polynomial function of the size N of input, e.g.,
 – $aN^2 + bN + c$

• some polynomials might be too big to be quick (N^{100})?
• some non-polynomials might be quick enough ($N^{(1+.02*(\log N))}$)?
• in practice, polynomial time really does work
What is "efficiency"?

• **Attempt #2**: An algorithm is efficient if its maximum number of steps of execution is polynomial in the size of its input.

• **In brief**: *efficient* means worst-case polynomial running time.
Precision of running time

\begin{align*}
\text{INSERTION-SORT}(A) & \\
1 & \text{for } j = 2 \text{ to } A\text{.length} \\
2 & \text{key } = A[j] \\
3 & \text{/* Insert } A[j] \text{ into the sorted sequence } A[1..j-1] \\
4 & i = j - 1 \\
5 & \text{while } i > 0 \text{ and } A[i] < \text{key} \\
7 & i = i - 1 \\
8 & A[i+1] = \text{key} \\
\end{align*}

<table>
<thead>
<tr>
<th>cost</th>
<th>times</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>n</td>
</tr>
<tr>
<td>c_2</td>
<td>$n - 1$</td>
</tr>
<tr>
<td>c_4</td>
<td>$n - 1$</td>
</tr>
<tr>
<td>c_5</td>
<td>$\sum_{j=2}^{n} t_j$</td>
</tr>
<tr>
<td>c_6</td>
<td>$\sum_{j=2}^{n} (t_j - 1)$</td>
</tr>
<tr>
<td>c_7</td>
<td>$\sum_{j=2}^{n} (t_j - 1)$</td>
</tr>
<tr>
<td>c_8</td>
<td>$n - 1$</td>
</tr>
</tbody>
</table>

[Cormen et al. *Introduction to Algorithms*, 3rd ed, 2009]
Precision of running time

INSERTION-SORT(A)

1. \(\text{for } j = 2 \text{ to } A.\text{length}\)
2. \(\text{key} = A[j]\)
3. // Insert \(A[j]\) into the sorted sequence \(A[1..j-1]\)
4. \(i = j - 1\)
5. \(\text{while } i > 0 \text{ and } A[i] < \text{key}\)
7. \(i = i - 1\)
8. \(A[i+1] = \text{key}\)

<table>
<thead>
<tr>
<th>cost</th>
<th>times</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1)</td>
<td>(n)</td>
</tr>
<tr>
<td>(c_2)</td>
<td>(n - 1)</td>
</tr>
<tr>
<td>(c_4)</td>
<td>(n - 1)</td>
</tr>
<tr>
<td>(c_5)</td>
<td>(\sum_{j=2}^{n} t_j)</td>
</tr>
<tr>
<td>(c_6)</td>
<td>(\sum_{j=2}^{n} (t_j - 1))</td>
</tr>
<tr>
<td>(c_7)</td>
<td>(\sum_{j=2}^{n} (t_j - 1))</td>
</tr>
<tr>
<td>(c_8)</td>
<td>(n - 1)</td>
</tr>
</tbody>
</table>

The running time of the algorithm is the sum of running times for each statement executed; a statement that takes \(c_i\) steps to execute and executes \(n\) times will contribute \(c_i n\) to the total running time. To compute \(T(n)\), the running time of **INSERTION-SORT** on an input of \(n\) values, we sum the products of the cost and times columns, obtaining

\[
T(n) = c_1 n + c_2 (n - 1) + c_4 (n - 1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1)
\]

\[
+ c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n - 1).
\]

[Cormen et al. *Introduction to Algorithms*, 3rd ed, 2009]
Precision of running time

• Precise bounds are **exhausting to find**
• Precise bounds are to some extent **meaningless**
 – Are those constants c1..c8 really useful?
 – If it takes 25 steps in high level language, but compiled down to assembly would take 10x more steps, is the precision useful?
 – **Caveat:** if you're building code that flies an airplane or controls a nuclear reactor, you do care about precise, real-time guarantees
Some simplified running times

<table>
<thead>
<tr>
<th>size of input</th>
<th>max # steps as function of N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>$N=10$</td>
<td>< 1 sec</td>
</tr>
<tr>
<td>$N=100$</td>
<td>< 1 sec</td>
</tr>
<tr>
<td>$N=1,000$</td>
<td>< 1 sec</td>
</tr>
<tr>
<td>$N=10,000$</td>
<td>< 1 sec</td>
</tr>
<tr>
<td>$N=100,000$</td>
<td>< 1 sec</td>
</tr>
<tr>
<td>$N=1,000,000$</td>
<td>1 sec</td>
</tr>
</tbody>
</table>

assuming 1 microsecond/step

very long = more years than estimated number of atoms in universe
Simplifying running times

• Rather than $1.62N^2 + 3.5N + 8$ steps, we would rather say that running time "grows like $N^2"
 – identify broad classes of algorithm with similar performance
• Ignore the low-order terms
 – e.g., ignore $3.5N+8$
 – Why? For big N, N^2 is much, much bigger than N
• Ignore the constant factor of high-order term
 – e.g., ignore 1.62
 – Why? For classifying algorithms, constants aren't meaningful
 – Caveat: Performance tuning real-world code actually can be about getting the constants to be small!
• Abstraction to an imprecise quantity
Imprecise abstractions

• OCaml’s `int` type is an abstraction of a subset of \mathbb{Z}
 – don’t know which `int` when reasoning about the type of an expression

• ± 1 is an abstraction of $\{1,-1\}$
 – don’t know which when manipulating it in a formula

• Here’s a new one: Big Ell
 – $L(e)$ represents an integer whose absolute value is less than or equal to the absolute value of e
 – precisely, $L(e) = \{m \mid \text{abs}(m) \leq \text{abs}(e)\}$
 – e.g., $L(5) = \{-5,-4,-3,\ldots,3,4,5\}$
Manipulating Big Ell

• What is $1 + L(5)$?

• Trick question!
 – Replace $L(5)$ with set: $1 + \{-5,-4,-3,\ldots,3,4,5\}$
 – But $+$ is defined on ints, not sets of ints

• We could distribute the $+$ over the set:
 $\{1-5,1-4,\ldots,1+4,1+5\} = \{-4,-2,\ldots,4,6\}$
 – That is, a set of values, one for each possible instantiation of $L(5)$

• Note that $\{-4,-3,\ldots,5,6\} \subseteq \{-6,-5,-4-3,-2,\ldots,4,5,6\} = L(6)$

• So we could say that $1 + L(5) \subseteq L(6)$

• Or, in a serious abuse of notation, we could say that $1 + L(5) = L(6)$
Question #2

What is \(L(2) + L(3) \)?

Hint: set of values, one for each possible instantiation of \(L(2) \) and of \(L(3) \)

A. \(L(2) + L(3) \subseteq L(2) \)
B. \(L(2) + L(3) \subseteq L(3) \)
C. \(L(2) + L(3) \subseteq L(4) \)
D. \(L(2) + L(3) \subseteq L(5) \)
E. \(L(2) + L(3) \subseteq L(6) \)
Question #2

What is \(L(2) + L(3)\)?

Hint: set of values, one for each possible instantiation of \(L(2)\) and of \(L(3)\)

A. \(L(2) + L(3) \subseteq L(2)\)
B. \(L(2) + L(3) \subseteq L(3)\)
C. \(L(2) + L(3) \subseteq L(4)\)
D. \(L(2) + L(3) \subseteq L(5)\)
E. \(L(2) + L(3) \subseteq L(6)\)
Question #3

What is $L(5) - L(3)$?

A. $L(5) - L(3) \subseteq L(2)$
B. $L(5) - L(3) \subseteq L(3)$
C. $L(5) - L(3) \subseteq L(5)$
D. $L(5) - L(3) \subseteq L(7)$
E. $L(5) - L(3) \subseteq L(8)$
Question #3

What is $L(5) - L(3)$?

A. $L(5) - L(3) \subseteq L(2)$

B. $L(5) - L(3) \subseteq L(3)$

C. $L(5) - L(3) \subseteq L(5)$

D. $L(5) - L(3) \subseteq L(7)$

E. $L(5) - L(3) \subseteq L(8)$
Even harder...

What is $2^L(3)$?

- $L(3) = \{-3, -2, \ldots, 2, 3\}$
- So $2^L(3)$ could be any of $\{2^{-3}, 2^{-2}, \ldots, 2^2, 2^3\} = \{1/8, 1/4, \ldots, 4, 8\}$
- And $\{1/8, 1/4, \ldots, 4, 8\} \subseteq L(8) = L(2^3)$
- Therefore $2^L(3) \subseteq L(2^3)$

...we can use this idea of Big Ell to invent an imprecise abstraction for running times
Big Oh, take 1

- Recall: we're interested in running time as a function of input size
- "New" imprecise abstraction: Big Oh
 - $O(g)$ represents a function f whose absolute value is less than or equal to the absolute value of function g, for every input n.
 - precisely, $O(g) = \{f \mid \forall n, |f(n)| \leq |g(n)|\}$
 - e.g., $O(\text{fun } n \to 2n) = \{f \mid \forall n, |f(n)| \leq |2n|\}$
 - $(\text{fun } n \to n) \in O(\text{fun } n \to 2n)$
 - $(\text{fun } n \to n) \in O(\text{fun } n \to n^{100})$
Recall: we want to ignore constant factors

- $O(g)$ represents a function f whose absolute value is less than or equal to the absolute value of function g times some positive constant c, for every input n.

- Precisely, $O(g) = \{ f \mid \text{exists } c > 0, \text{forall } n, \text{abs}(f(n)) \leq c \times \text{abs}(g(n)) \}$

- e.g., $O(\text{fun } n -> n^3) = \{ f \mid \text{exists } c > 0, \text{forall } n, \text{abs}(f(n)) \leq c \times \text{abs}(n^3) \}$

- $(\text{fun } n -> 3*n^3) \in O(\text{fun } n -> n^3)$ because $3*n^3 \leq c \times n^3$, where $c = 3$
Recall: we care about what happens at scale

fun \(n \rightarrow n^2 \)

fun \(n \rightarrow 2n \)
Recall: we care about what happens at scale

- $O(g)$ represents a function f whose absolute value is less than or equal to the absolute value of function g times some positive constant c, for every input n greater than or equal to some positive constant n_0.

- precisely, $O(g) = \{f | \exists c > 0, n_0 > 0, \forall n \geq n_0, \text{abs}(f(n)) \leq c \times \text{abs}(g(n))\}$

- e.g., $O(\text{fun n -> n^2}) = \{f | \exists c > 0, n_0 > 0, \forall n \geq n_0, \text{abs}(f(n)) \leq c \times \text{abs}(n^2)\}$

 - (fun n -> 2n) \in $O(\text{fun n -> n^2})$ because $2n \leq c \times n^2$, where $c = 1$, for all $n \geq 2$

 - (fun n -> 3110) \in $O(\text{fun n -> 1})$ because $3110 \leq c \times n$, where $c = 3110$, for all $n \geq 1$
Big Oh

\[O(g) = \{ f \mid \text{exists } c>0, n0>0, \text{forall } n \geq n0, \text{abs}(f(n)) \leq c * \text{abs}(g(n)) \} \]

- Most authors write "\(O(g(n)) = \{ f(n) \mid \ldots \} \)" in definitions
- They don't really mean \(g \) applied to \(n \); they mean a function \(g \) parameterized on input \(n \) but not yet applied
- Maybe they never studied functional programming 😊
Big Oh

\[O(g) = \{ f \mid \text{exists } c > 0, n_0 > 0, \]
\[\text{forall } n \geq n_0, \]
\[|f(n)| \leq c \times |g(n)| \}\]

• All authors write, e.g.,
 – \(2n = O(n^2) \) instead of
 – \((\text{fun } n \rightarrow 2n) \in O(\text{fun } n \rightarrow n^2) \)

• Your instructor has always found this abusage distressing

• Yet henceforth he will follow the convention 😊
 – The standard defense is that \(= \) should be read here as "is" not as "equals"

• You must be careful with quantity is on the RHS: one-directional equality!
Question #4

Arrange these functions in *ascending order of growth*: if \(f \) is immediately before \(g \), then \(f=O(g) \).

\[
\begin{align*}
&\text{(fun n -> 10}^\text{n}) \\
&\text{(fun n -> sqrt(n))} \\
&\text{(fun n -> ln(n))}
\end{align*}
\]

A. \(10^n, \sqrt{n}, \ln(n) \)
B. \(10^n, \ln(n), \sqrt{n} \)
C. \(\sqrt{n}, \ln(n), 10^n \)
D. \(\sqrt{n}, 10^n, \ln(n) \)
E. \(\ln(n), \sqrt{n}, 10^n \)
F. \(\ln(n), 10^n, \sqrt{n} \)
Question #4

Arrange these functions in ascending order of growth: if f is immediately before g, then f=O(g).

(fun n -> 10^n)
(fun n -> sqrt(n))
(fun n -> ln(n))

A. 10^n, sqrt(n), ln(n)
B. 10^n, ln(n), sqrt(n)
C. sqrt(n), ln(n), 10^n
D. sqrt(n), 10^n, ln(n)
E. ln(n), sqrt(n), 10^n
F. ln(n), 10^n, sqrt(n)
A Theory of Big Oh

- reflexivity: \(f = O(f) \)
- (no symmetry condition for Big Oh; there is one for Big Theta)
- transitivity: \(f = O(g) \land g = O(h) \implies f = O(h) \)
- \(c \cdot O(f) = O(f) \)
- \(O(c \cdot f) = O(f) \)
- \(O(f) + O(g) = O(|f| + |g|) \)
 - where \(|f| + |g| \) means (fun n -> abs(f(n)) + abs(g(n)))
- \(O(f) \cdot O(g) = O(f \cdot g) \)
 - where \(f \cdot g \) means (fun n -> f(n)*g(n))
- ...

Competency with Big Oh requires knowing at least this much of its theory.
What is "efficiency"?

Final attempt: An algorithm is efficient if its worst-case running time is $O(N^d)$ for some constant d.
Running times of some algorithms

- $O(1)$: access an element of an array (of length n)
- $O(\log n)$: binary search through sorted array of length n
- $O(n)$: maximum element of list of length n
- $O(n \log n)$: mergesort a list of length n
- $O(n^2)$: bubblesort an array of length n
- $O(n^3)$: matrix multiplication of n-by-n matrices
- $O(2^n)$: enumerate all integers of bit length n

...some of these are not obvious, require proof
Want to learn more?

• Take CS 4820 Algorithms
• Much of today's material from:
 – *Algorithm Design* by Jon Kleinberg and Éva Tardos
 – *Concrete Mathematics* by Graham, Knuth, Patashnik
 – *Introduction to Algorithms* by Cormen, Leiserson, Rivest, and Stein
WRAP-UP FOR TODAY

Please hold still for 1 more minute.
Upcoming events

• Clarkson office hours cancelled today
• **Thanksgiving Break:** no class, consulting hours, or office hours Wed. or Thur.
• **PS6 due in 9 days,** no late passes

This is efficient.

This is 3110