CS 3110 — Data Structures and Functional Programming

Lecture 27
Fixpoints and Recursion

3 May 2012

Recursion in λ -calculus

Last time: encoded booleans and numbers in λ -calculus. Can we use these to express the factorial function?

```
let rec fact n =
  if n=0 then 1 else n * fact (n-1)
```

Recursion in λ -calculus

Last time: encoded booleans and numbers in λ -calculus. Can we use these to express the factorial function?

```
let rec fact n =
  if n=0 then 1 else n * fact (n-1)
```

Yes... but we need a way to define recursive functions!

Recursion in λ -calculus

Last time: encoded booleans and numbers in λ -calculus. Can we use these to express the factorial function?

```
let rec fact n =
  if n=0 then 1 else n * fact (n-1)
```

Yes... but we need a way to define recursive functions!

What about "Landin's knot"?

```
let fact =
  let g : (int -> int) = ref (fun n -> 42) in
  let f n = if n=0 then 1 else n * !g (n-1) in
  g := f;
  fun n -> !g n
```

Won't work— λ -calculus doesn't have references!

Fixpoints

Fixpoints

Definition (Fixpoint)

A fixpoint x of a function f satisfies f(x) = x.

So we want to find a fixpoint of t_fact.

Fixpoints in λ -calculus

Recall the λ -calculus term

$$omega \triangleq (\lambda x. x x)(\lambda x. x x)$$

which β -converts to itself in one step.

Fixpoints in λ -calculus

Recall the λ -calculus term

$$omega \triangleq (\lambda x. x x)(\lambda x. x x)$$

which β -converts to itself in one step.

If we interpose a λ -calculus term F we get

$$(\lambda x. F(x x))(\lambda x. F(x x))$$

$$\Rightarrow F((\lambda x. F(x x))(\lambda x. F(x x)))$$

That is, a fixed point of W!

Fixpoints in λ -calculus

Recall the λ -calculus term

omega
$$\triangleq (\lambda x. x x)(\lambda x. x x)$$

which β -converts to itself in one step.

If we interpose a λ -calculus term F we get

$$(\lambda x. F(x x))(\lambda x. F(x x))$$

$$\Rightarrow F((\lambda x. F(x x))(\lambda x. F(x x)))$$

That is, a fixed point of W!
The famous Y combinator is just

$$Y \triangleq \lambda f.(\lambda x. f(x x)) (\lambda x. f(x x))$$

Factorial in λ -calculus

$$Y \triangleq \lambda f.(\lambda x. f(x x)) (\lambda x. f(x x))$$

 $t_{-}fact \triangleq \lambda g. \lambda n. cond (iszero n) \overline{1} (mul n (g (predn)))$
 $fact \triangleq Y t fact$

Factorial in λ -calculus

$$Y \triangleq \lambda f.(\lambda x. f(x x)) (\lambda x. f(x x))$$

 $t_{-}fact \triangleq \lambda g. \lambda n. cond (iszero n) \overline{1} (mul n (g (predn)))$
 $fact \triangleq Y t_{-}fact$

Theorem (Correctness of fact)

 $\forall n. \, fact \, \overline{n} = \overline{n!}$

Factorial in λ -calculus

$$Y \triangleq \lambda f.(\lambda x. f(x x)) (\lambda x. f(x x))$$

 $t_{-}fact \triangleq \lambda g. \lambda n. cond (iszero n) \overline{1} (mul n (g (predn)))$
 $fact \triangleq Y t_{-}fact$

Theorem (Correctness of *fact*)

 $\forall n. \, fact \, \overline{n} = \overline{n!}$

Proof.

By induction on n...

Review

Overview

- Functional Programming
- Data Structures
- Verification and Testing
- Concurrency
- Analysis of Algorithms
- Advanced Topics

Functional Programming

- OCaml Basics (syntax, evaluation)
- Types (tuples, records, variants, polymorphism)
- Higher-order functions (currying)
- Side-effects (printing, exceptions)
- Maps and folds (tail recursion)
- The Substitution Model

Functional Data Structures

- Basic Modules (signatures, structures)
- Basic data structures (stacks, queues, dictionaries)
- Advanced Modules (abstraction functions, representation invariants)
- Trees (red-black)
- Mutability (arrays, union-find, functional arrays)
- The Environment Model

Verification and Testing

- Logic (propositional, predicate)
- Induction
- Verification (total, partial correctness)

Concurrency

- Threads
- Locks and condition variables

Analysis of Algorithms

- Asymptotic complexity
- Recurrences and recursion trees
- Master method
- Substitution method
- Amortized analysis

Advanced Toics

- Memoization
- Locality and Memory Management
- Graph Algorithms
- Type Inference and Unification
- Laziness and Streams
- λ-calculus
- Fixpoints and Recursion

Thank you!