
http://www.!ickr.com/photos/ro"/2097239111/ 

Data Structures and  
Functional Programming 
Course Overview 

Nate Foster 
Cornell University 
Spring 2012 



Course staff 

Instructor: Nate Foster 
•  Joined Cornell last year from UPenn 
•  Research area: programming languages 
•  Functional programmer since 1998 

 

TAs: Shrutarshi Basu (coordinator), Ashir Amer,  
Stuart Davis, Gautam Kamath, Katie Meusling, 
Greg Zecchinni 

 

Consultants: many 
 

You have a large and veteran staff. Make use of them! 
 

Office hours in Upson 360 Sunday-Thursday from 7-9pm 
Additional office hours Thursday from 5-7pm 
 



Course meetings 

Lectures: Tuesday and Thursday 10:10-11am 
 
Recitations: Monday and Wednesday, 2:30 and 3:30 
•  A third section will be added, at a time that helps out 

students with con!icts (probably in the evening) 
•  We’ll pick the time at the end of class today 

 
New material in lecture and recitation 
•  You are expected to attend both 

 
Class participation counts 
•  Please stick to the same section 



Course web site 

http://www.cs.cornell.edu/Courses/cs3110 
•  Course material 
•  Homework 
•  Announcements 
 

Includes a complete set of course notes 
  Nearest equivalent to a textbook 
  But the lectures and sections are de"nitive 

 
Links to lecture notes will go live shortly after lecture 
 
Goal is to help, not replace attendance! 



Piazza and CMS 

  Online discussion forum 
  Monitored by TAs/consultants 
  Ask for help, but don’t post solutions 

 
CMS 

  “Course Management System” 
  Built by Andrew Myers (with help from lots of students) 
  Assignments and grades posted here 



Coursework 

6 problem sets  
•  Due Thursdays at 11:59pm 
•  PS #1 (out today) is due Thurday 2/2 
•  Electronic submission via CMS 

 
4 x individual assignments 
2 x two-person assignments 
•  3 weeks for the big assignments 
•  There will be intermediate checkpoints 

 
6 (small) quizzes in lecture 
 
2 preliminary exams and a "nal 
 



Grading 

Breakdown: 
•  45% - Problem sets 
•  5% - Quizzes (lowest dropped) 
•  30% - Preliminary exams (lower exam weighted less) 
•  20% - Final exam 

 
Will follow the usual CS3110 curve  
•  Centered around  a B/B+ 



Late policy 

You can hand it in until we start grading 
•  15% penalty / day 
•  After we start grading, no credit 

 
Save your code and submit early and often 
•  CMS is your friend 
•  Be certain you have submitted something, even if it 

isn’t perfect and you are improving it 

If you have a emergency (e.g., medical, family) talk to 
Nate before the last second 



Academic integrity 

Strictly enforced 
 
Easier to check than you might think 
•  We compare submissions using automated tools 

Unpleasant and painful for everyone involved 
 
To avoid pressure, start early 
•  We try hard to encourage this 
•  Take advantage of the large veteran staff 
•  Let Nate know if you run into difficulty 



What this course is about 

Programming isn’t hard 
 
Programming well is very hard 
•  Programmers vary greatly 
•  10X or more difference in skills 

We want you to write code that is: 
•  Reliable, efficient, readable, testable, provable, 

maintainable… beautiful! 

Expand your problem-solving skills 
•  Recognize problems and map them onto the right 

abstractions and algorithms 



Thinking versus typing 

“A year at the lab bench saves an hour 
at the library” 
 
Fact: there are an in"nite number of 
incorrect programs 
 
Corollary: making random tweaks to 
your code is unlikely to help 
•  If you "nd yourself changing “<“ 

to “<=“ in the hopes that your 
code will work, you’re in trouble 

 
Lesson: think before you type! 

http://www.!ickr.com/photos/tmartin/32010732/ 



CS 3110 Challenges 

In early courses smart students can get 
away with bad habits 

  “Just hack until it works” 
  Solve everything by yourself 
  Write "rst, test later 

CS 3110 ≈ Tour de France 
  Professionals need good work 

habits and the right approach 

Will need to think rigorously about 
programs and their models 

  Think for a few minutes, instead 
of typing for days! 

http://www.!ickr.com/photos/franklintello/4349205547/ 



Rule #1 

Good programmers are lazy 
•  Never write the same code twice (why?) 
•  Reuse libraries (why?) 
•  Keep interfaces small and simple (why?) 

Pick a language that makes it easy to write the code you need 
•  Early emphasis on speed is a disaster (why?) 

 
Rapid prototyping! 



Main goal of CS3110 

Master key linguistic abstractions: 
•  Procedural abstraction 
•  Control: iteration, recursion, pattern matching, 

laziness, exceptions, events 
•  Encapsulation: closures, ADTs 
•  Parameterization: higher-order procedures, modules 

 
Mostly in service to rule #1 
 
Transcends individual programming languages 



Other goals 

Exposure to software engineering techniques: 
•  Modular design 
•  Integrated testing 
•  Code reviews 

 
Exposure to abstract models: 
•  Models for design & communication 
•  Models & techniques for proving correctness 
•  Models for analyzing space & time 

Rigorous thinking about programs! 
•  Proofs, like in high school geometry 

 



Choice of language 

This matters less than you suspect 
 
Must be able to learn new languages 
•  This is relatively easy if you understand programming 

models and paradigms 
 
We will be using OCaml, a dialect of ML 
 
Why use yet another language? 
•  Not to mention an obscure one? 

Main answer: OCaml programs are easy to reason about 



Why                 ? 

Awesome OCaml feature: many common errors simply impossible 
  More precisely, they are caught at compile time 
  Early failure is very important (why?) 

Functional language 
  Programs have a clear semantics 
  Heavy use of recursion 
  Lots of higher-order functions 
  Few side effects 

 
Statically typed and type safe 

  Many bugs caught by compiler 



Imperative Programming 

Program uses commands (a.k.a statements) that do 
things to the state of the system: 

•  x = x + 1; 
•  a[i] = 42; 
•  p.next = p.next.next; 

Functions and methods can have side effects 
•  int wheels(Vehicle v) { v.size++; return v.numw; } 



Functional Style 

Idea: program without side effects 
•  Effect of a function is only to return a result value 

Program is an expression that can be evaluated to 
produce a value 

•  For example, evaluating 2+2 yields 4 
•  Just like mathematical expressions 

Enables equational reasoning about programs: 
•  if x equals y, replacing y with x has no effect: 
•  let x=f(0) in x+x equivalent to f(0)+f(0) 



Functional Style 

Bind variables to values, don’t mutate existing variables 
 
No concept of x=x+1 or x++ 

These do nothing remotely like x++ 
      let x = x+1 in x 
      let rec x = x+1 in x 

 
The former assumes an existing binding for x and creates a 
new one (no modi"cation of x) 
 
The latter is an invalid expression 
 



Trends against imperative style 

Fantasy: program interacts with a single system state 
•  Interactions are reads from and writes to variables or "elds. 
•  Reads and writes are very fast 
•  Side effects are instantly seen by all parts of a program 

Reality : there is no single state 
•  Multicores have own caches with inconsistent copies of state 
•  Programs are spread across different cores and computers (PS5 & PS6) 
•  Side effects in one thread may not be immediately visible in another 
•  Imperative languages are a bad match to modern hardware 

Computer 

Program Memory 



Imperative vs. functional 

Functional programming languages 
•  Encourages building code out of functions 
•  f(x) always gives same result 
•  No side effects: easier to reason about what happens 
•  Better "t to modern hardware, distributed systems 

 
Functional style usable in Java, C, Python… 

•  Becoming more important with interactive UI’s and 
multiple cores 

•  Provides a form of encapsulation – hide the state and 
side effects inside a functional abstraction 

  



Programming Languages Map 

Fortran 

Haskell Matlab 

Pascal 

Perl 
C 

C++ 

Lisp 

OCaml SML 
Java 

Functional Imperative 

Object-Oriented 

Scheme 

ML 
family 

JavaScript 



Imperative “vs.” functional 

Functional languages: 
  Higher level of abstraction 
  Closer to speci"cation 
  Easier to develop robust software 

Imperative languages: 
  Lower level of abstraction 
  Often more efficient 
  More difficult to maintain, debug 
  More error-prone 

  



Example 1: Sum Squares 

 
y = 0; 
for (x = 1; x <= n; x++) { 
 y = y + x*x; 
} 
 
 
 



Example 1: Sum Squares 

int sumsq(int n) { 
 y = 0; 
 for (x = 1; x <= n; x++) { 
  y += x*x; 
 } 
 return n; 

} 
let rec sumsq (n:int):int = 
  if n=0 then 0 
  else n*n + sumsq(n-1) 



Example 1: Sum Squares Revisited 

 
 
Types can be left implicit and then inferred.  
 
For example, in following, typechecker determines 
that n is an integer, and sumsq returns an integer 
 
let rec sumsq n = 
  if n=0 then 0 
  else n*n + sumsq(n-1) 



Example 1a: Sum f’s 

 
Functions are "rst-class objects  
 
Can be used as arguments and returned as values 
 
let rec sumop f n =  
  if n=0 then 0 
  else f n + sumop f (n-1) 
 
sumop cube 5 
sumop (function x -> x*x*x) 5 
 



Example 2: Reverse List 

List reverse(List x) { 
  List y = null; 
  while (x != null) { 
  List t = x.next; 
  x.next = y; 
  y = x; 
  x = t; 
 } 
 return y; 
} 



Example 2: Reverse List 

 
let rec reverse lst = 
 match lst with 
    [] -> [] 
   | h :: t -> reverse t  @ [h] 
 
 
Pattern matching simpli"es working with data 
structures, being sure to handle all cases 



Example 3: Pythagoras 

 
let pythagoras x y z = 
  let square n = n*n in 
    square z = square x + square y 
 
 
Every expression returns a value, when this function 
is applied it returns a Boolean value 



Why OCaml? 

Objective Caml is one of the most robust and general 
functional languages available 

•  Used in "nancial industry 
•  Lightweight and good for rapid prototyping 

Embodies important ideas better than Java, C++ 
•  Many of these ideas work in Java, C++, and you 

should use them… 
 

Learning a different language paradigms will make you a 
more !exible programmer down the road 

•  Likely that Java and C++ will be replaced  
•  Principles and concepts beat syntax 
•  Ideas in ML will likely be in next-generation languages 



Rough schedule 

Introduction to functional programming (6) 
Functional data structures (5) 
Veri"cation and Testing (5) 
Preliminary Exam #1 
Concurrency (1) 
Data structures and analysis of algorithms (5) 
Preliminary Exam #2 
Topics: streams, λ-calculus, garbage collection 
Final exam 


