
1

Announcements:

 PS #6 due Friday December 2, 11:59PM

o Submissions open until grading starts, as usual

o No earlier than Monday night 11:59PM

 FINAL EXAM on Monday December 12

 Tournament and review session on Sunday December 11

o Time and place to be announced

2

 What have we covered in CS3110?

 Tools for solving difficult computational problems

o Abstraction, specification, design

o Functional programming

o Concurrency

o Reasoning about programs

o Data structures and algorithms

 My personal view of computer scientists versus computer programmers

o Note that there are 100x as many programmers

 At any time there are some existing programs

 And some programs that don’t exist but clearly could

o Example: problem set (before anyone solves it)

o Ukrainian spellchecker for Android

 Computer programmers write such programs

 This can be hard work, and well paid

 Always clear that such a program exists,

o but not necessarily trivial to write it within resource constraints

(programmer time, running time/space)

3

 Computer scientists expand the set of programs we know how to write

 Write programs whose existence is not at all clear

o Can we make a car that drives itself?

o Distinguish pictures of cats from dogs?

o Find broken bones in x-ray images?

o Create synthetic pictures that look as good as real ones?

 Sometimes we fail

o Quite often, in fact

o “If you aren’t occasionally failing, then you are working on problems

that are too easy.”

 Sometimes we discover that a problem is fundamentally hard

o It wasn’t just that the person who tried it wasn’t smart enough

 This is the topic of our final lecture

4

We're going to show that the set of all programs is *countable*.

DEFINITION:

We'll say that two sets A and B are the same size if there is an exact pairing

between them; that is, if there is a set R of pairs (a b) such that every element of

A occurs on the left-hand side of *exactly one* pair in R and every element of B

occurs on the right-hand side of *exactly one* pair in R.

Example: the sets {0,1,2} and {2,4,6} are the same size because we can pair them

up as follows: (0 2), (1 4), (2 6). This definition goes for infinite sets as well.

A set S is countable if it is the same size as the natural numbers N = {0,1,2,...}; that

is, if there is a way to pair the elements of S with 0,1,2,...

Do you think this should be possible for every infinite set? It's not!

Countable sets are all the same size; their "size" is the size of N, countably infinite,

0. This is the smallest infinite size. There are strictly larger infinite sets, as we'll

see.

So, a set S is countable if the elements can be listed out: s0, s1, s2,...

 For example, N is countable: take the identity pairing (n n)

 The set of integers Z = {...,-3,-2,-1,0,1,2,3,...} is countable:

o pair n with 2n, -n with 2n+1.

5

Wait a minute. Something's weird. N is a proper subset of Z. So how can it be the

same size?

But it is. You can pair up the elements of Z with the elements of N exactly.

The even numbers E = {0,2,4,6,8,...} are countable: pair n with 2n. Again, E is a

proper subset of N, so how can it be the same size? But it is.

6

The *rationals* are countable.

1/1 1/2 1/3 1/4 1/5

2/1 2/2 2/3 2/4 2/5

3/1 3/2 3/3 3/4 3/5

4/1 4/2 4/3 4/4 4/5

5/1 5/2 5/3 5/4 5/5

Number these in a diagonal zigzag:

1 2 4 6 10

3 * 7 *

5 8 *

9 *

11

etc... Skip over duplicates (marked in the table above with "*").

7

There are many programs (in any language, or all of them!):

 * A program is a finite string of ASCII characters.

 * We can list out all the finite ASCII strings.

 0 - empty string strings of length 0

 1 - a strings of length 1

 2 - b .

 26 - z .

 27 - aa strings of length 2

 28 - ab .

 etc. .

 * Now, not all of these are legal programs, but all legal programs are in this list.

 * We can recognize the legal OCaml programs and skip over the others.

 * So, there are (only) countably many OCaml programs.

8

So far it looks like everything is countable (we can put any set in 1-1

correspondence with N, or with a subset of N).

This is true for any set whose elements are finite – this is basically what the above

argument about programs showed.

But it’s easy to show that real numbers in *0,1) are not countable. A real number

can be thought of as a function f from N to {0,1,…,9}, where f(m) is the mth digit.

Example: -3 = f, where f(0) = 1, f(1) = 4, f(2) = 1, f(3) = 5, f(4) = 9, etc.

But functions from N to {0,1,…,9} are not countable. It’s easiest to consider

simpler functions from N to {0,1} (binary representation of a real).

If these functions were countable we could list them in a table, where each

function is a row. Let’s call the first function f0, the next one f1, etc.

 inputs

 0 1 2 3 4 5 6 7 8 9 ...

f0 | #f #t #f #t #f #t #f #t #f #t ...

f1 | #f #f #t #t #f #t #f #t #f #f ...

f2 | #t #f #t #f #t #f #t #f #t #f ...

f3 | #f #f #f #f #t #f #f #f #f #f ...

f4 | #f #t #f #f #t #t #t #f #f #t ...

9

But we can easily create a function that isn’t in this table. It simply differs from fm

in its response to the input m.

This argument is called diagonalization, and is one of the greatest mathematical

ideas of all time. Cantor, Godel, Russel, Turing, etc!

All the following sets are all the same size (they can be put into one-to-one

correspondence with each other), and they are all uncountable:

 - all Boolean valued functions of one argument

 - all infinite binary strings, e.g. 01101001010010...

 (0 in position n if f(n)=#f, 1 in position n if f(n)=#t)

 - all real numbers in the interval [0,1]

 (take the binary expansion .01101001010010...)

 (there are some duplicates here, e.g. .000111111... and .001000000....

 but only countably many)

 (and uncountable minus countable is still uncountable)

 - all paths in the infinite complete binary tree

 (0=go left, 1=go right)

 - all subsets of N

10

 Boolean-valued functions (true/false) are generally pretty easy to write

programs for. Examples: prime, even, etc.

 By diagonalization there are more of these than programs

o So there must be ones for which there is no program!

o In fact, this is true for (almost) all of them

 Consider the following question: does a function of one argument

terminate or run forever, given this input?

o halts(f,a) will be true or false depending on if f(a) halts

o Boolean-valued function

 Note that we aren’t going to write in OCaml because types get in the way

 Now consider a new Boolean-valued function safely(g)

o First we check if halts(g,g), and if so we return not(g(g))

o Otherwise we just return false

o In pseudocode (NOT in ML) we have

safely(g) = if halts(g,g) then not(g,g) else false

o Ignoring type checking you can do things like:

safely(fun(f)->f(24) != 42)

 OK, now what is the value of safely(safely) ?

 It’s the value of not(safely(safely)). Oops!

 Resolution: you can’t have a function like halts.

 In any language, no matter how smart you are.

 Determining whether or not a program halts is undecidable

 The only way you can figure out what a program does it to run it!

11

 This has huge real-life consequences.

o Microsoft design of plug-ins (requiring burglars to sign in)

o Virtualization

o Virus issues

 Computer scientists tend to informally say that all programming languages

are the same,

o i.e. anything you can do in one language you can do in another

 There is a mathematically precise way to express this

o Turing equivalence, see CS3810

o Taught by John Hopcroft, Turing-award winner

 Weaker languages can actually be better

o PDF versus postscript

 How do you tell if a problem is undecidable?

 It’s not always obvious, though there is one great (sound) heuristic

 Consider the following child’s game:

o We are given types of blocks over symbols, such as a,b,c

o Infinite set of blocks of each type

o Find a sequence of blocks so that the top symbols and the bottom

ones are the same

12

 Example 1:

a

baa

,

ab

aa

,

bba

bb

i = 1

i = 2

i = 3

 Solution: 3,2,3,1

bba

bb

ab

aa

bba

bb

a

baa

i1 = 3 i2 = 2 i3 = 3 i4 = 1

13

 Example 2:

bb

b

,

ab

ba

,

c

bc

1 2 3

 Solution: 1, any number of 2, 3

bb

b

ab

ba

ab

ba

...

ab

ba

c

bc

1 2 2 2 3

 Can we write a program to solve this? It depends!

 For a binary alphabet, it is decidable (first example)

 For an alphabet with 7 or more characters it is undecidable

 For 3 (second example) or more characters it is unknown!

 Suppose we can use no more than k blocks (including copies). Is it

decidable?

 Yes – it is finite!

 But it is actually NP-hard, so can’t do better than brute force

14

 Another example: Wang tiling of the plane

