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Announcements: 

 PS #6 due Thursday December 1, 11:59PM 

 Guest lecture on Tuesday 

 Final quiz on Tuesday 11/29 

 

 P2 comments: you will see the hard problems again on the final. Reversing 

a list is a classic test of your understanding of pointers. 

 Only source of frustration: if I give you code that calls a function mi1 and 

ask you to define mi1 you are not allowed to change the code I gave you. 

o File this under “read the question”. 
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 Key environment model examples 

 
let ctr1 =  
  let v = ref 0 in 
  fun(x) -> (v := !v + x; v) (* Or !v to be functional *) 
 
let ctr2 =  
  fun(x) ->  
  let v = ref 0 in 
    (v := !v + x; v)  
 
# ctr1(5);; 
- : int ref = {contents = 5} 
# ctr1(5);; 
- : int ref = {contents = 10} 
# ctr2(5);; 
- : int ref = {contents = 5} 
# ctr2(5);; 
- : int ref = {contents = 5} 
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 Memoization 

 

 Recall definition of fact and fib: 

 
let rec fact =          
 fun(x) -> if x=0 then 1 else x*fact(x-1) 
 
let rec fib =  
 fun(n) -> if n<2 then 1 else fib(n-1) + fib(n-2) 
 

 Today: memoization to speed up the computation 

 Basic idea: store previous answer so we don’t need to recompute it! 

o Classic time-space tradeoff, but can pay big dividends 

o Closely related to Dijkstra 

 Note: side effects to speed up a functional program!  

o Not part of contract (hidden state) 

 
let lx = ref 0  
and lfact = ref 0 in 
 let rec mfact = 
    fun(x:int) -> if x=0 then 1  
     else  
    if !lx=x then  
     begin 
       print_string("Found it");  
      !lfact; 
     else 
        begin 
         lx := x; lfact := x*mfact(x-1); !lfact 
        end 
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 We can do same thing for fib, with huge payoff 

 Naïve fib is O(n), where  is the golden ratio 1.618 

o Proof of this, plus the fact this bound is tight, in section 

o Nice use of substitution method plus induction 

 
let fibm(n) = 
  let memo: int option array = Array.create (n+1) None in 
  let rec f_mem(n) = 
    match memo.(n) with 
 Some result -> result            (* computed already! *) 
      | None -> 

let result = if n<2 then 1 else f_mem(n-1) + f_mem(n-2) 
in 

     memo.(n) <- (Some result);   (* record in table *) 
     result 
  in 
    f_mem(n) 

 

 The function f_mem defined inside fibm contains the original recursive 

algorithm, except before doing that calculation, it first checks if the result 

has already been computed and stored in the table, in which case it simply 

returns the result.  

 What does this buy us? Lots! 

 

 How do we analyze the running time of this function?  

 The time spent in a single call to f_mem is O(1) if we exclude the time spent 

in any recursive calls that it happens to make.  

 Now we look for a way to bound the total number of recursive calls by 

finding some measure of the progress that is being made. 
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 A good choice of progress measure, not only here but also for many uses of 

memoization, is the number of nonempty entries in the table (i.e. entries 

that contain Some integer value rather than None). 

  Each time f_mem makes the two recursive calls it also increases the number 

of nonempty entries by one (filling in a formerly empty entry in the table 

with a new value).  

 Since the table has only n entries, there can thus only be a total of O(n) calls 

to f_mem, for a total running time of O(n) (because we established above 

that each call takes O(1) time).  

 This speedup from memoization thus reduces the running time from 

exponential to linear, a huge change; for instance for n = 32 the speedup 

from memoization is more than a factor of a million. 

 

 Memoziation is beneficial when there are common subproblems that are 

being solved repeatedly. Thus we are able to use some extra storage to 

save on repeated computation. 

 Again, compare with Dijkstra’s algorithm.  

 This is a really powerful argument for CS 

o Taking a problem that seems to require exponential time and solving 

it in linear time! 

 Many famous CS results are of this form 
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 We can use higher order functions to memoize any function.  

 First consider the case of memoizing a non-recursive function f.  

 In that case we simply need to create a hash table that stores the 

corresponding value for each argument that f is called with  

o (and to memoize multi-argument functions we can use currying and 

uncurrying to convert to a single argument function).  

 We’ll do recursive ones in section, or maybe at the end of lecture (hah!) 

let memo f = 
  let h = Hashtbl.create 11 in 
    fun x -> 
      try 
        Hashtbl.find h x 
      with 
          Not_found -> 
            let y = f x in 
              Hashtbl.add h x y; 
              y 
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Party Optimization 

Suppose we want to throw a party for a company whose organization chart is a binary 

tree. Each employee has an associated fun value, and we want the set of invited 

employees to have the maximum total fun, which is the sum of the fun values of the 

invited employees.  

However, no one has fun if some employee and that employee's direct superior are 

both invited, so we never invite two employees who are directly connected in the 

organization chart. (The less whimsical name for this problem is the maximum weight 

independent set in a tree.) 

There are 2
n
 possible invitation lists, so the naive algorithm that computes the total fun 

value of every invitation list takes exponential time. 

We can use memoization to turn this into a linear-time algorithm. We start by defining a 

variant type to represent the employees. The int at each node is the fun value. 

type tree = Empty | Node of int * tree * tree 

Now, how can we solve this recursively?  

One important observation is that in any tree, the optimal invitation list that doesn't 

include the root node will be the union of optimal invitation lists for the left and right 

subtrees. And the optimal invitation list that does include the root node will be the union of 

optimal invitation lists for the left and right children that do not include their respective root 

nodes.  

So it seems useful to have functions that optimize the invitation lists for the case where 

the root node is included and for the case where the root node is excluded. We'll call 

these two functions party_in and party_out. Then the result of party is just the 

maximum of these two functions: 

  

http://en.wikipedia.org/wiki/Independent_set
http://en.wikipedia.org/wiki/Independent_set
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(* Maximum weight independent set in a tree *) 

(* AKA the office party optimization problem *) 

type tree = Empty | Node of int * tree * tree 

(* Returns optimum fun for t *) 

let rec party t : int = max (party_in t) (party_out t) 

(* Returns optimum fun for t assuming the root node of t is included *) 

and party_in t = 

  match t with  

    Empty -> 0 

  | Node (v, left, right) -> v + party_out left + party_out right 

(* Returns optimum fun for t assuming the root node of t is excluded *) 

and party_out t = 

  match t with 

    Empty -> 0 

  | Node (v, left, right) -> party left + party right 

 

This code has exponential performance. But notice that there are only n possible 

distinct calls to party. If we change the code to memoize the results of these calls, the 

performance will be linear in n. Here is a version that memoizes the result of party and 

also computes the actual invitation lists. Notice that this code memoizes results directly in 

the tree. 
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(* This version memoizes the optimal fun value for each tree node. 

   It also remembers the best invite list. Each tree node has the 

   name of the employee as a string. *) 

type tree = Empty 

  | Node of int * string * tree * tree * 

  (int * string list) option ref 

 

let rec party t : int * string list = 

  match t with 

    Empty -> (0, []) 

  | Node (v, name, left, right, memo) -> 

      match !memo with 

        Some result -> result 

      | None -> 

          let (infun, innames) = party_in t in 

          let (outfun, outnames) = party_out t in 

          let result = 

            if infun > outfun then (v + infun, name :: innames) 

            else (outfun, outnames) in 

          memo := Some result; result 
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and party_in t = 

  match t with 

    Empty -> (0, []) 

  | Node (v, name, l, r, _) -> 

      let (lfun, lnames) = party_out l 

      and (rfun, rnames) = party_out r in 

      (v + lfun + rfun, name :: lnames @ rnames) 

 

and party_out t = 

  match t with 

    Empty -> (0, []) 

  | Node (v, _, l, r, _) -> 

      let (lfun, lnames) = party l 

      and (rfun, rnames) = party r in 

      (lfun + rfun, lnames @ rnames) 
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Why was memoization so effective for solving this problem?  

As with the Fibonacci algorithm, we had the overlapping subproblems property, in which 

the naive recursive implementation called the function party many times with the same 

arguments. Memoization saves all those calls.  

Furthermore, the party optimization problem has the property of optimal substructure, 

meaning that the optimal answer to a problem is computed from optimal answers to 

subproblems.  

Not all optimization problems have this property.  

The key to using memoization effectively for optimization problems is to figure out how 

to write a recursive function that implements the algorithm and has the two properties. 

Sometimes this requires thinking carefully. 
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 For recursive functions, however, the recursive call structure needs to be 

modified.  

 This can be abstracted out independent of the function that is being 

memoized:  

let memo_rec f = 
  let h = Hashtbl.create 11 in 
  let rec g x = 
    try 
      Hashtbl.find h x 
    with 
        Not_found -> 
          let y = f g x in 
            Hashtbl.add h x y ; 
            y 
  in 
    g 

 Now we can slightly rewrite the original fib function from the beginning of 

lecture using this general memoization technique:  

let fib_memo = 
  let rec fib self = function (n) ->  
    if n<2 then 1 else self(n-1) + self(n-2) 
  in 
    memo_rec fib 
 


