
1 

 

Announcements: 

 PS #6 due Thursday December 1, 11:59PM 

 Prelim #2 tonight, 7:30-9PM, in B17 Upson 

o Graded until very late 

 Guest lecture on Tuesday 

 Final quiz on Tuesday 11/29 

 

The Environment Model 

 So far, we've used the substitution model to understand how OCaml 

programs evaluate.   

o The substitution model is very simple and mechanical.   

o Although there are a zillion cases to deal with in even a semi-realistic 

language, everything is reduced to a set of well-defined rules that 

govern the evaluation process.  

  

 The basic idea is simple:  

o evaluate subexpressions to values,  

o and when you have a function call,  

 substitute the argument value for the formal parameter within 

the body of the function,  

 and then evaluate the resulting expression. 

 

 But the substitution model is not without its shortcomings.   

 First, it's not straightforward to extend the model with support for side 

effects (e.g., ref-assignment or array updates.)   

 Second, it's not a very efficient or realistic model of how we really evaluate 

OCaml programs.   

 In this lecture, we will introduce a somewhat more realistic model called 

the environment model that is a little closer to how the interpreter actually 

operates. 



2 

 

 To understand the environment model, let's go back and revisit the 

substitution model on a very small subset of OCaml.  The subset we will 

consider here is as follows: 

e ::= c | id | fun id -> e | (e1 e2) 
 

 where e represents an expression, c a constant, id an identifier, fun id -> e 

a function, and (e1 e2) an application of a function to an argument. 

 

 In the substitution model, we evaluate expressions according to the 

following inductive rules: 

eval(c) = c 
eval(id) = Error 
eval(fun id -> e) = fun id -> e 
eval((e1 e2)) = v 
    where (fun id -> e) = eval(e1) 
      and v2 = eval(e2) 
      and e' = subst(v2,id,e) 
      and v = eval(e') 

 where subst(v,id,e) is the expression that results from substituting the 

value v for all free occurrences of the identifier id in the expression e.  

 The substitution operator subst is defined formally inductively by:  

subst(v,id,c) = c 
subst(v,id,id') = if id=id' then v else id' 
subst(v,id,fun id' -> e) =  
    if id=id' then (fun id' -> e) else (fun id' -> e') 
    where e' = subst(v,id,e) 
subst(v,id,(e1 e2)) = (subst(v,id,e1)  subst(v,id,e2)) 
 

  



3 

 

 For this fragment of the language, all of the action occurs in function 

applications.  

  

 Recall that to apply a function,  

o we first evaluate the function expression until we get a function 

value,  

o then we evaluate the function argument,  

o then substitute the argument for all free occurrences of the function 

parameter within the body of the function,  

o then finally evaluate the resulting expression.  

 

 Now consider that when we substitute v2 for id in e, we must crawl over all 

of e looking for free occurrences of the variable id.   

 Afterwards, we must crawl over the resulting expression again in order to 

evaluate it.   

 Clearly, this is a very inefficient process, as we're crawling over the same 

expressions again and again. 

  



4 

 

Combining Substitution and Evaluation 

 How can we avoid crawling over expressions twice, once for substitution 

and once for evaluation?   

 One idea is to do them both at once.  For example, we could rewrite the 

eval code for functions as follows: 

eval((e1 e2)) = v 
    where (fun id -> e) = eval(e1) 
      and v2 = eval(e2) 
      and v = eval_and_subst(e,id,v2) 

 

 eval_and_subst(e,id,v2) will eval e, remembering to replace id by v2. 

 We want to combine evaluation and substitution into a single pass over the 

expression.  

 

 So how would we write the function eval_and_subst?  Here's a first 

attempt.   

 For constants, substitution doesn't do anything, and evaluation doesn't do 

anything—they both return the same constant.   

 So eval_and_subst on constants should just return the constant: 

eval_and_subst(c,id,v2) = c 
 

 For variables, substitution checks to see if the variable is the same as the 

one we're supposed to substitute.   

 If so, it returns the value being substituted.   

 If not, it leaves the value alone.   

 Eval on a variable is undefined, and eval of a value is always that value.   

 So, when we put the two together we get: 

eval_and_subst(id',id,v2) = if id=id' then v2 else 
Error 
 



5 

 

 So far, so good.  For applications, we simply eval_and_subst the 

subexpressions and then do what we did before: 

eval_and_subst((e1 e2),id,v2) = v 
    where (fun id' -> e) = eval_and_subst(e1,id,v2) 
      and v2' = eval_and_subst(e2,id,v2) 
      and v = eval_and_subst(e,id',v2') 
 

 So far, we've been able to combine substitution and evaluation.  

  

 But when we run into functions, it's difficult to combine the two.   

 The problem is that substitution needs to crawl over the body of the 

function, but evaluation does not.   

 

 Recall that eval of a function always returns the function with the body 

unevaluated.   

 We can't evaluate the body yet because we don't have a value for the 

parameter.   

 So, the idea of combining evaluation and substitution seems to break 

down.   

 

 

 

 Once we hit a function, we have no choice but to do the substitution 

separately, and then do the evaluation later, when the function is applied: 

eval_and_subst(fun id' -> e,id,v2) = subst(v2,id,fun id' -> 
e) 

 

 While this certainly works, and is a bit more efficient than the substitution 

model, it's not quite satisfying.   

 In the next section, we'll discuss how we can always combine substitution 

and evaluation so that we never process code twice.   

 The basic idea is to be extremely lazy! 



6 

 

The Environment Model 

 As we saw above, the basic idea of the environment model, as opposed to 

the substitution model, is to combine the process of substitution with the 

process of evaluation into a single pass over the code.   

o But we ran into problems with functions, because we need to 

substitute within their body, and yet we can't evaluate their body—

at least until they're applied. 

 

 But what if we were lazy about performing the substitution?   

 Instead of actually doing the substitution when we encountered the 

function, what if we made a promise to do the substitution at the point 

when the function was applied?   

 

 Then we could continue to combine substitution and evaluation. 

 

 Of course, the problem with this is that, when we go to apply the function, 

we'll need to substitute two things: the original value and variable that we 

were substituting, and the argument and formal parameter for the 

function.   

 In fact, in general, we may need to substitute an arbitrary number of values 

for variables that we have deferred. 

 

 So, we must rewrite the eval_and_subst code so that it takes an expression 

and a substitution of arbitrary size.   

 This substitution provides values for all of the free variables in the code.   

 When we encounter a variable during evaluation, we simply look up the 

variable's value in the substitution.   

 That is, the substitution that we carry around during evaluation can serve 

as a dynamic environment that provides bindings for the free variables of 

the code.  That's why we call this the environment model. 

  



7 

 

 There are a number of ways to represent environments (i.e., substitutions).   

 Perhaps the easiest is to just use an association list, a list of pairs of which 

the first component is a variable and the second component is the 

variable's associated value.   

 When we want to lookup a variable's value, we walk down the list until we 

find the same variable and then return the associated value. 

 There's one more detail that we need to flesh out: when we go to evaluate 

a function, we're going to delay substitution.   

 We do this by building a data structure called a closure.   

o A closure is just a pair of the function and its environment, and 

represents a promise to substitute the values in the environment 

whenever we go to evaluate the function.   

o So, a closure is nothing more than a lazy substitution. 

Evaluation Rules for the Environment Model 

 To make the discussion above precise, we can write down a formal set of 

evaluation rules for the environment model.   

 We begin by defining our values as either constants or closures.   

 A closure is a pair of a function and a substitution, and that a substitution is 

an association list, mapping identifiers to values.   

o We use curly braces to denote a closure object: 

v ::= c | {(fun id -> e), S} 
 

 Now we can write the evaluation rules for the environment model.  

 The eval function now takes an extra input, an environment S, as evaluation 

in the environment model is always with respect to an environment. 

eval(c,S) = c 
eval(id,S) = lookup(id,S) 
eval(fun id -> e,S) = {fun id -> e,S} 
eval((e1 e2),S) = v 
    where {fun id -> e,S'} = eval(e1,S) 
      and v2 = eval(e2,S) 



8 

 

      and v = eval(e,(id,v2)::S') 
 

 That's it! Note that when evaluate a function, we return a closure 

containing the current environment S.   

 When we evaluate a function call (e1 e2), we first evaluate e1 in the 

current environment to get a closure, and then evaluate e2 in the current 

environment to get a value v2.   

o The closure for e1 has its own environment S'.  

o  When we evaluate the body of the function, we must make sure to 

fulfill the promise of the closure and use its environment (S') as we 

evaluate.   

o We must also extend the environment so that when the formal 

parameter of the function id is encountered, we know that its value 

is v2. 

 Although the environment model appears simple, it's actually fairly subtle.  

You should practice evaluating some expressions using the environment 

model to see how they work out. 


