Announcements:

PS #6 due Thursday December 1, 11:59PM

Prelim #2 tonight, 7:30-9PM, in B17 Upson
o Graded until very late

Guest lecture on Tuesday

Final quiz on Tuesday 11/29

The Environment Model

So far, we've used the substitution model to understand how OCaml
programs evaluate.
o The substitution model is very simple and mechanical.
o Although there are a zillion cases to deal with in even a semi-realistic
language, everything is reduced to a set of well-defined rules that
govern the evaluation process.

The basic idea is simple:
o evaluate subexpressions to values,
o and when you have a function call,
= substitute the argument value for the formal parameter within
the body of the function,
= and then evaluate the resulting expression.

But the substitution model is not without its shortcomings.

First, it's not straightforward to extend the model with support for side
effects (e.g., ref-assignment or array updates.)

Second, it's not a very efficient or realistic model of how we really evaluate
OCaml programs.

In this lecture, we will introduce a somewhat more realistic model called
the environment model that is a little closer to how the interpreter actually
operates.



e To understand the environment model, let's go back and revisit the
substitution model on a very small subset of OCaml. The subset we will
consider here is as follows:

e ::=c | id | fun 7d > e | (el e2)

e where e represents an expression, c a constant, iqd an identifier, fun iad -> e
a function, and (e1 e2) an application of a function to an argument.

e In the substitution model, we evaluate expressions according to the
following inductive rules:

eval (o) = ¢
eval(7d) = Error
eval (fun 7d -> e) = fun 7d -> e
eval((el e2)) = v
where (fun 7d -> e) = eval(el)
and vZ2 = eval(e2)
and e’ = subst(v2, 7d, e)
and v = eval(e’)

e where subst (v, id, e) IS the expression that results from substituting the
value v for all free occurrences of the identifier idin the expression e.
e The substitution operator subst is defined formally inductively by:

subst(v, 7d,c) = c

subst(v, 7d,7d") = if 7d=7d' then v else 7d’

subst(v, 7d,fun 7d’ -> e) =
if 7d=7d’ then (fun 7d' -> e) else (fun 7d' -> e')
where e’ = subst(v, 7d, e)

subst(v, 7d, (el e2)) = (subst(v,7d,el) subst(v,7id,e2))



e For this fragment of the language, all of the action occurs in function

applications.

e Recall that to apply a function,
o we first evaluate the function expression until we get a function
value,
then we evaluate the function argument,
then substitute the argument for all free occurrences of the function
parameter within the body of the function,
o then finally evaluate the resulting expression.

e Now consider that when we substitute v2 for id in e, we must crawl over all
of e looking for free occurrences of the variable id.

e Afterwards, we must crawl over the resulting expression again in order to
evaluate it.

e C(learly, this is a very inefficient process, as we're crawling over the same
expressions again and again.



Combining Substitution and Evaluation

How can we avoid crawling over expressions twice, once for substitution
and once for evaluation?

One idea is to do them both at once. For example, we could rewrite the
eval code for functions as follows:

eval((el e2)) = v

where (fun 7d -> e) = eval(el)
and vZ = eval(e2)
and v = eval_and_subst(e, 7d, v2)

eval_and_subst(e,id,v2) will eval e, remembering to replace id by v2.
We want to combine evaluation and substitution into a single pass over the
expression.

So how would we write the function eval and subst? Here's a first
attempt.

For constants, substitution doesn't do anything, and evaluation doesn't do
anything—they both return the same constant.

SO eval and subst on constants should just return the constant:

eval_and_subst(c,7d,v2) = c

For variables, substitution checks to see if the variable is the same as the
one we're supposed to substitute.

If so, it returns the value being substituted.

If not, it leaves the value alone.

Eval on a variable is undefined, and eval of a value is always that value.
So, when we put the two together we get:

eval_and_subst(7d’,7d,v2) = if id=7d’' then v2 else
Error



So far, so good. For applications, we simply eval and subst the
subexpressions and then do what we did before:

eval_and_subst((el e2),7d,v2) = v

where (fun 7d' -> e) = eval_and_subst(el, 7d,v2)

and vZ2' = eval_and_subst(eZ, 7d, v2)
and v = eval_and_subst(e, 7d’,v2")

So far, we've been able to combine substitution and evaluation.

But when we run into functions, it's difficult to combine the two.
The problem is that substitution needs to crawl over the body of the
function, but evaluation does not.

Recall that eva1 of a function always returns the function with the body
unevaluated.

We can't evaluate the body yet because we don't have a value for the
parameter.

So, the idea of combining evaluation and substitution seems to break
down.

Once we hit a function, we have no choice but to do the substitution
separately, and then do the evaluation later, when the function is applied:

eval_and_subst(fun 7d' -> e, 7d,v2) = subst(v2,7d,fun 7d’' ->

e)

While this certainly works, and is a bit more efficient than the substitution
model, it's not quite satisfying.

In the next section, we'll discuss how we can always combine substitution
and evaluation so that we never process code twice.

The basic idea is to be extremely lazy!



The Environment Model

e As we saw above, the basic idea of the environment model, as opposed to
the substitution model, is to combine the process of substitution with the
process of evaluation into a single pass over the code.

o But we ran into problems with functions, because we need to
substitute within their body, and yet we can't evaluate their body—
at least until they're applied.

e But what if we were lazy about performing the substitution?

e Instead of actually doing the substitution when we encountered the
function, what if we made a promise to do the substitution at the point
when the function was applied?

e Then we could continue to combine substitution and evaluation.

e Of course, the problem with this is that, when we go to apply the function,
we'll need to substitute two things: the original value and variable that we
were substituting, and the argument and formal parameter for the
function.

e Infact, in general, we may need to substitute an arbitrary number of values
for variables that we have deferred.

e So, we must rewrite the eval and subst code so that it takes an expression
and a substitution of arbitrary size.

e This substitution provides values for all of the free variables in the code.

e When we encounter a variable during evaluation, we simply look up the
variable's value in the substitution.

e That s, the substitution that we carry around during evaluation can serve
as a dynamic environment that provides bindings for the free variables of
the code. That's why we call this the environment model.



e There are a number of ways to represent environments (i.e., substitutions).

e Perhaps the easiest is to just use an association list, a list of pairs of which
the first component is a variable and the second component is the
variable's associated value.

e When we want to lookup a variable's value, we walk down the list until we
find the same variable and then return the associated value.

e There's one more detail that we need to flesh out: when we go to evaluate
a function, we're going to delay substitution.

e We do this by building a data structure called a closure.

o Aclosure is just a pair of the function and its environment, and
represents a promise to substitute the values in the environment
whenever we go to evaluate the function.

o So, a closure is nothing more than a lazy substitution.

Evaluation Rules for the Environment Model

e To make the discussion above precise, we can write down a formal set of
evaluation rules for the environment model.
e We begin by defining our values as either constants or closures.
e Aclosure is a pair of a function and a substitution, and that a substitution is
an association list, mapping identifiers to values.
o We use curly braces to denote a closure object:

v i:=c | {(fun 7d -> e), S}

e Now we can write the evaluation rules for the environment model.
e The eva1 function now takes an extra input, an environment s, as evaluation
in the environment model is always with respect to an environment.

eval(c,S) = c
eval (7d,S5) = lookup(7d,S)
eval (fun 7d -> e,5) = {fun 7d -> e, S}
eval((el e2),S) = v
where {fun 7d -> e,S'} = eval(el,S)
and vZ = eval(eZ,S)



and v = eval(e,(7d,v2)::5")

e That's it! Note that when evaluate a function, we return a closure
containing the current environment s.

e When we evaluate a function call ez e2), we first evaluate <z in the
current environment to get a closure, and then evaluate <2 in the current
environment to get a value v2.

o The closure for 1 has its own environment s.

o When we evaluate the body of the function, we must make sure to
fulfill the promise of the closure and use its environment (s') as we
evaluate.

o We must also extend the environment so that when the formal
parameter of the function :i4is encountered, we know that its value
is v2.

e Although the environment model appears simple, it's actually fairly subtle.
You should practice evaluating some expressions using the environment
model to see how they work out.



