
1

Announcements:

 PS #6 due Thursday December 1, 11:59PM

 Prelim #2 tonight, 7:30-9PM, in B17 Upson

o Graded until very late

 Guest lecture on Tuesday

 Final quiz on Tuesday 11/29

The Environment Model

 So far, we've used the substitution model to understand how OCaml

programs evaluate.

o The substitution model is very simple and mechanical.

o Although there are a zillion cases to deal with in even a semi-realistic

language, everything is reduced to a set of well-defined rules that

govern the evaluation process.

 The basic idea is simple:

o evaluate subexpressions to values,

o and when you have a function call,

 substitute the argument value for the formal parameter within

the body of the function,

 and then evaluate the resulting expression.

 But the substitution model is not without its shortcomings.

 First, it's not straightforward to extend the model with support for side

effects (e.g., ref-assignment or array updates.)

 Second, it's not a very efficient or realistic model of how we really evaluate

OCaml programs.

 In this lecture, we will introduce a somewhat more realistic model called

the environment model that is a little closer to how the interpreter actually

operates.

2

 To understand the environment model, let's go back and revisit the

substitution model on a very small subset of OCaml. The subset we will

consider here is as follows:

e ::= c | id | fun id -> e | (e1 e2)

 where e represents an expression, c a constant, id an identifier, fun id -> e

a function, and (e1 e2) an application of a function to an argument.

 In the substitution model, we evaluate expressions according to the

following inductive rules:

eval(c) = c
eval(id) = Error
eval(fun id -> e) = fun id -> e
eval((e1 e2)) = v
 where (fun id -> e) = eval(e1)
 and v2 = eval(e2)
 and e' = subst(v2,id,e)
 and v = eval(e')

 where subst(v,id,e) is the expression that results from substituting the

value v for all free occurrences of the identifier id in the expression e.

 The substitution operator subst is defined formally inductively by:

subst(v,id,c) = c
subst(v,id,id') = if id=id' then v else id'
subst(v,id,fun id' -> e) =
 if id=id' then (fun id' -> e) else (fun id' -> e')
 where e' = subst(v,id,e)
subst(v,id,(e1 e2)) = (subst(v,id,e1) subst(v,id,e2))

3

 For this fragment of the language, all of the action occurs in function

applications.

 Recall that to apply a function,

o we first evaluate the function expression until we get a function

value,

o then we evaluate the function argument,

o then substitute the argument for all free occurrences of the function

parameter within the body of the function,

o then finally evaluate the resulting expression.

 Now consider that when we substitute v2 for id in e, we must crawl over all

of e looking for free occurrences of the variable id.

 Afterwards, we must crawl over the resulting expression again in order to

evaluate it.

 Clearly, this is a very inefficient process, as we're crawling over the same

expressions again and again.

4

Combining Substitution and Evaluation

 How can we avoid crawling over expressions twice, once for substitution

and once for evaluation?

 One idea is to do them both at once. For example, we could rewrite the

eval code for functions as follows:

eval((e1 e2)) = v
 where (fun id -> e) = eval(e1)
 and v2 = eval(e2)
 and v = eval_and_subst(e,id,v2)

 eval_and_subst(e,id,v2) will eval e, remembering to replace id by v2.

 We want to combine evaluation and substitution into a single pass over the

expression.

 So how would we write the function eval_and_subst? Here's a first

attempt.

 For constants, substitution doesn't do anything, and evaluation doesn't do

anything—they both return the same constant.

 So eval_and_subst on constants should just return the constant:

eval_and_subst(c,id,v2) = c

 For variables, substitution checks to see if the variable is the same as the

one we're supposed to substitute.

 If so, it returns the value being substituted.

 If not, it leaves the value alone.

 Eval on a variable is undefined, and eval of a value is always that value.

 So, when we put the two together we get:

eval_and_subst(id',id,v2) = if id=id' then v2 else
Error

5

 So far, so good. For applications, we simply eval_and_subst the

subexpressions and then do what we did before:

eval_and_subst((e1 e2),id,v2) = v
 where (fun id' -> e) = eval_and_subst(e1,id,v2)
 and v2' = eval_and_subst(e2,id,v2)
 and v = eval_and_subst(e,id',v2')

 So far, we've been able to combine substitution and evaluation.

 But when we run into functions, it's difficult to combine the two.

 The problem is that substitution needs to crawl over the body of the

function, but evaluation does not.

 Recall that eval of a function always returns the function with the body

unevaluated.

 We can't evaluate the body yet because we don't have a value for the

parameter.

 So, the idea of combining evaluation and substitution seems to break

down.

 Once we hit a function, we have no choice but to do the substitution

separately, and then do the evaluation later, when the function is applied:

eval_and_subst(fun id' -> e,id,v2) = subst(v2,id,fun id' ->
e)

 While this certainly works, and is a bit more efficient than the substitution

model, it's not quite satisfying.

 In the next section, we'll discuss how we can always combine substitution

and evaluation so that we never process code twice.

 The basic idea is to be extremely lazy!

6

The Environment Model

 As we saw above, the basic idea of the environment model, as opposed to

the substitution model, is to combine the process of substitution with the

process of evaluation into a single pass over the code.

o But we ran into problems with functions, because we need to

substitute within their body, and yet we can't evaluate their body—

at least until they're applied.

 But what if we were lazy about performing the substitution?

 Instead of actually doing the substitution when we encountered the

function, what if we made a promise to do the substitution at the point

when the function was applied?

 Then we could continue to combine substitution and evaluation.

 Of course, the problem with this is that, when we go to apply the function,

we'll need to substitute two things: the original value and variable that we

were substituting, and the argument and formal parameter for the

function.

 In fact, in general, we may need to substitute an arbitrary number of values

for variables that we have deferred.

 So, we must rewrite the eval_and_subst code so that it takes an expression

and a substitution of arbitrary size.

 This substitution provides values for all of the free variables in the code.

 When we encounter a variable during evaluation, we simply look up the

variable's value in the substitution.

 That is, the substitution that we carry around during evaluation can serve

as a dynamic environment that provides bindings for the free variables of

the code. That's why we call this the environment model.

7

 There are a number of ways to represent environments (i.e., substitutions).

 Perhaps the easiest is to just use an association list, a list of pairs of which

the first component is a variable and the second component is the

variable's associated value.

 When we want to lookup a variable's value, we walk down the list until we

find the same variable and then return the associated value.

 There's one more detail that we need to flesh out: when we go to evaluate

a function, we're going to delay substitution.

 We do this by building a data structure called a closure.

o A closure is just a pair of the function and its environment, and

represents a promise to substitute the values in the environment

whenever we go to evaluate the function.

o So, a closure is nothing more than a lazy substitution.

Evaluation Rules for the Environment Model

 To make the discussion above precise, we can write down a formal set of

evaluation rules for the environment model.

 We begin by defining our values as either constants or closures.

 A closure is a pair of a function and a substitution, and that a substitution is

an association list, mapping identifiers to values.

o We use curly braces to denote a closure object:

v ::= c | {(fun id -> e), S}

 Now we can write the evaluation rules for the environment model.

 The eval function now takes an extra input, an environment S, as evaluation

in the environment model is always with respect to an environment.

eval(c,S) = c
eval(id,S) = lookup(id,S)
eval(fun id -> e,S) = {fun id -> e,S}
eval((e1 e2),S) = v
 where {fun id -> e,S'} = eval(e1,S)
 and v2 = eval(e2,S)

8

 and v = eval(e,(id,v2)::S')

 That's it! Note that when evaluate a function, we return a closure

containing the current environment S.

 When we evaluate a function call (e1 e2), we first evaluate e1 in the

current environment to get a closure, and then evaluate e2 in the current

environment to get a value v2.

o The closure for e1 has its own environment S'.

o When we evaluate the body of the function, we must make sure to

fulfill the promise of the closure and use its environment (S') as we

evaluate.

o We must also extend the environment so that when the formal

parameter of the function id is encountered, we know that its value

is v2.

 Although the environment model appears simple, it's actually fairly subtle.

You should practice evaluating some expressions using the environment

model to see how they work out.

