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Announcements: 

 Quiz #4 on 11/1 at start of class 

 No RDZ office hours next week or week after due to travel 

o You can always see me by appointment 

 Prelim #2 on evening of Tue 11/15, review session the night before 

 

 Guest lecture: “Effective OCaml” on Thu 11/3 by Yaron Minsky 

 Lectures the week of 11/8 will be give by Prof. Foster 

 Guest lecture on Tue 11/22 (right before Thanksgiving break) 

 

 

 Today’s topic: some important design patterns for concurrent programming 

o Producer/consumer 

o Thread pools 

o Beyond 
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Producer/Consumer and Thread Pools 

 A classic concurrent programming design pattern is producer-consumer, 

where processes are designated as either producers or consumers.  

 

 The producers are responsible for adding to some shared data structure  

o the consumers are responsible for removing from that structure.  

 

 Only one party, either a single producer or a single consumer, can access 

the structure at any given time. 

 

 Here we consider an example with a shared queue, using a mutex 

(introduced previously) to protect the queue 

 

 CODE AT END OF LECTURE 
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 We divide the work of a producer into two parts:  

o produce which simulates the work of creating a product and  

o store which adds the product to the shared queue.  

 

 produce increments the counter p that it is passed, sleeps for d seconds to 

simulate the time taken to produce, and outputs a status message:  

 store acquires the mutex m, adds to the shared queue, outputs a status 

message and releases the mutex:  

 The producer loops n times calling produce and then store, and then sleeping 

for a random amount of time up to 2.5 seconds.  

o When done looping it outputs a status message.  

 

 The consumer loops n times, acquiring the mutex m, then attempting to take 

an item from the shared queue.  

 If it succeeds it prints out the item, if not it prints out that it failed to get an 

item.  

 In either event it unlocks the mutex and then waits a random amount of 

time up to 2.5 seconds.  
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 This use of mutual exclusion is very coarse grained.  

 

 For instance it would be better to be able to have a consumer wait until 

something is in the queue, rather than returning empty handed. 

o Busy-waiting is never a good idea 

 

 For this we can make use of condition variables, which were introduced 

previously.  

o Done in section 

 

 Note: generally, a function that has the effect of locking (or unlocking) a 

mutex should be used with caution, and should be clearly documented as 

doing so.  

o This is a huge source of bugs! 
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Thread Pools 

 A thread pool consists of a collection of threads, called workers that are 

used to process work.  

o Basic advantage: avoid overhead of thread creation 

o Similar to server farms 

 Each worker looks for new work to be done, when it finds work to do it 

does it, and when finished goes back to get more work.  

 The workers play the role of consumers in the producer-consumer model 

that we just considered above.  

 In fact, thread pool implementations often use a shared queue to store the 

work, thus building quite directly on the previous example. 

 

 Before considering implementation of thread pool, let's get a better idea of 

what it does and where it is useful.  

 The basic operations for a thread pool are  

o to create a new thread pool with some specified number of workers,  

o to add work to an existing thread pool (which will subsequently be 

performed by one of the workers), and  

o to destroy an existing thread pool (shutting it down once all 

previously added work is complete). 

 

 While deadlock is a risk in any multithreaded program, thread pools 

introduce another opportunity for deadlock, where all pool threads are 

executing tasks that are blocked waiting for the results of another task on 

the queue, but the other task cannot run because there is no unoccupied 

thread available. 
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 Here is the signature for a basic thread pool:  

module type SIMPLE_THREAD_POOL = sig 
  type pool 
  (* A No_workers exception is thrown if addwork is called when the 
     threadpool is being shut down.  The work is not added. *) 
  exception No_workers 
  (* create a thread pool with the specified number of worker threads *) 
  val create: int -> pool 
  (* add work to the pool, where work is any unit->unit function *) 
  val addwork: (unit->unit) -> pool -> unit 
  (* destroy a thread pool, stopping all the threads once all work 
   * in the pool has been completed. *) 
  val destroy: pool -> unit 
end 

 Thread pools are particularly useful in setting where work arrives 

asynchronously, such as occurs with a server where many network requests 

may need to be handled promptly.  

 

 In such settings, a thread receives an event such as a network request,  

o adds the corresponding work to a thread pool (which will be run at 

some point in the future),  

o and then quickly returns indicating to the caller that the request will 

be handled.  

 

 Sometimes it is also useful to have a handle associated with each unit of 

work to which some value is sent.  

 The simple abstraction that we presented here does not have any means of 

returning a result,  

o as the functions representing work are of type unit->unit.  
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 Here we consider an implementation of the SIMPLE_THREAD_POOL interface in 

terms of a 4-tuple:  

o a mutable counter,  

o a mutable queue of functions that are the work remaining to be 

done,  

o a mutex, and  

o a condition variable.  

 The mutex is used to protect the counter and the queue, and the condition 

variable is used to signal when a worker should wake up to get new work.  

module Tpool : SIMPLE_THREAD_POOL = struct 
 
  type pool = (int ref * (unit -> unit) Queue.t * Mutex.t * Condition.t) 
 
  exception No_workers 
 
  let dowork tp =  ... 
 
  let create size =  ... 
 
  let addwork f tp =  ... 
 
  let rec done_wait tp n =  ... 
 
  let destroy tp =  ... 
 
end 
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 When the counter in the 4-tuple is a positive integer, then it indicates the 

number of worker threads that the thread pool was created with.  

 When the counter is a non-positive integer then it indicates that the thread 

pool is being destroyed,  

o the absolute value of the counter is then the number of threads 

which have properly exited.  

 This allows the destroy function to wait for the threads to finish their work 

and exit before returning.  

 

 Each worker thread runs the function dowork.  

 This function is not exposed in the interface and so can only be called from 

inside the implementation of Tpool.  

 dowork loops as long as the thread pool is not finished, in which case it exits.  

 A thread pool is finished when it is being destroyed and there also no work 

remaining to do.  

 

 We use the counter in the 4-tuple, here called nworkers, to indicate that the 

thread pool is being destroyed by setting its value to something less than 1.  

 In that case, if the queue of work is also empty then the thread exits as the 

pool is finished.  

 Otherwise, on each loop the worker waits for work to do, and then takes 

that work from the queue, executing it inside a try to ensure that 

unhandled exceptions in the work do not cause the worker to exit.  
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let dowork (tp:pool) = 
  match tp with (nworkers, q, m, c) -> 
    Mutex.lock m ; 
    (* When nworkers <=0 it means the thread pool is being 
     * destroyed.  If that is true and there is also no work left to do 
     * then stop looping and drop through to exit processing.*) 
    while (!nworkers > 0) || (Queue.length q > 0) do 
 (* In normal operation where nworkers>0 wait for stuff in the queue. *) 
 while (!nworkers > 0) && (Queue.length q = 0) do 
   dbgprint "waiting"; 
   Condition.wait c m 
 done; 
 (* Verify something in the queue rather than we are now being 
  * shut down, then get the work from the queue, unlock the 
  * mutex, do the work and relock the mutex before looping 
  * back. *) 
 if (Queue.length q  > 0) 
 then 
   let f = Queue.take q in 
     dbgprint "starting work"; 
     Mutex.unlock m; 
     (* Don't let an exception in the work, f, kill the thread, 
      * just catch it and go on. *) 
          (try ignore (f()) with _ -> ()); 
     Mutex.lock m 
    done; 
    (* A worker thread exits when the pool is being shut down.  It 
     * decrements the worker count which when all threads are 
     * finished should be -n, where n was the number of threads in 
     * the pool (counts down from 0). *) 
    nworkers := !nworkers-1; 
    dbgprint "exiting"; 
    Mutex.unlock m 
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 Note the use of the mutex in the 4-tuple, called m here, to protect accesses 

to the queue and the counter.  

 Before entering the while loop, and at the end of the while loop (thus 

before the next iteration of the loop), the mutex must be locked because 

both the counter and the queue are accessed.  

 The nested while loop checking for work to do uses Condition.wait to 

release the mutex and sleep until it receives the condition of work being 

ready.  

o Recall that this reacquires the mutex before returning.  

 It is important that the mutex is then unlocked before calling f, the work to 

be done.  

o This allows other workers to safely run concurrently, as f cannot 

access the queue or counter.  

 Then the mutex is reacquired before the end of the while loop.  

 When exiting the while loop, the mutex is already locked,  

o so the counter is simply decremented and then the mutex is released 

before the worker exits.  
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 The create function makes a 4-tuple, and starts up the specified number of 

threads, each of which runs the dowork function. create simply acquires the 

mutex at the beginning and releases it at the end. Other ways of writing 

this code are possible, where the mutex is not held during the entire 

process of creating the thread pool.  

  let create size = 
    if size <1 then raise(Failure "Tpool create needs at least one thread") 
    else 
      let tp = (ref 0, Queue.create(), Mutex.create(), Condition.create()) in 
 match tp with (nworkers, _, m, _) -> 
   Mutex.lock m; 
   while !nworkers < size do 
     ignore(Thread.create dowork tp); 
     nworkers := !nworkers+1 
   done; 
   Mutex.unlock m; 
   tp 
 

 The add_work function adds the given function to the queue. In doing so it 

first locks the mutex and checks whether the pool is being destroyed. If the 

pools is being destroyed instead of adding the work it throws the 

No_workers exception, after first releasing the mutex. If the pool is not being 

destroyed it adds the qork to the queue, signals there is work to be done, 

and unlocks the mutex.  

  let addwork (f:unit->unit) (tp:pool) = 
    match tp with (nworkers, q, m, c) -> 
      Mutex.lock m ; 
      if !nworkers <1 
      then (Mutex.unlock m; raise No_workers) 
      else 
 (Queue.add f q ; 
  Condition.signal c; 
  Mutex.unlock m ) 
 

 The destroy function acquires the mutex and then sets the number of 

workers to zero to indicate that the thread pool is being shut down. It then 

broadcasts to all the workers that there is something to be done, to ensure 
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that all the workers exit including ones that were currently sleeping 

awaiting work. Finally it releases the mutex and then waits for the workers 

to all exit, using the helper function done_wait.  

  let destroy (tp:pool) = 
    match tp with (nworkers, _, m, c) -> 
      Mutex.lock m; 
      let n = !nworkers in 
 nworkers := 0; 
 Condition.broadcast c; 
 Mutex.unlock m; 
 done_wait tp n 
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 Inter-process communication (IPC) generalizes threads 

o Imagine threads running on different machines, say in the cloud 

o Instead of shared memory consider “shared nothing” 

o Harder case than threads: distributed system with unreliable 

communications (such as TCP/IP) 

 

 Communication via message passing instead of shared memory 

 

 Definition of a “distributed system” 

o Failure due to a computer you’ve never heard of 

 

 How can two computers coordinate to do something? 

o Example: one-lane road with stoplights at each end 

o Agree to “northbound traffic for 5 minutes at 9AM” 

 Master/slave via shared memory 

 

 Difficulty of coordination with unreliable communications 

  



14 

 

let f = Queue.create() and m = Mutex.create () 
 
let produce i p d = 
  incr p; 
  Thread.delay d; 
  print_string("Producer " ^ string_of_int(i) ^ 
   " has produced " ^ string_of_int(!p) ^ "\n");   
  flush stdout 
 
let store i p = 
  Mutex.lock m ; 
  Queue.add (i,!p) f ; 
  print_string("Producer " ^ string_of_int(i) ^ 
   " has added its " ^ string_of_int(!p) ^ "-th product\n"); 
  flush stdout; 
  Mutex.unlock m 
 
let producer (n,i) = 
  let p = ref 0 
  and d = Random.float 2. in 
    for j = 1 to n do 
      produce i p d ; 
      store i p ; 
      Thread.delay (Random.float 2.5) 
    done; 
    print_string("Producer " ^ string_of_int(i) ^ 
   " is exiting.\n"); 
    flush stdout 
 
let consumer (n,i) = 
  for j = 1 to n do 
    Mutex.lock m ; 
    ( try 
 let ip, p = Queue.take f 
 in 
   print_string("Consumer " ^ string_of_int(i) ^ 
    " has taken product (" ^ string_of_int(ip) ^ 
    "," ^ string_of_int(p) ^ ")\n"); 
   flush stdout 
      with 
   Queue.Empty -> 
     print_string("Consumer " ^ string_of_int(i) ^ 
      " has returned empty-handed\n"); 
     flush stdout); 
    Mutex.unlock m ; 
    Thread.delay (Random.float 2.5) 
  done; 
  print_string("Consumer " ^ string_of_int(i) ^ 
   " is exiting.\n"); 
  flush stdout 
 


