
1

Announcements:

 PS3 back on Monday in section

 Quiz #3 in class Tue Oct 18

 Coverage includes Monday section

 PS4 due Thursday Oct 20, 11:59PM

 Partner up for PS5!

2

 Main reason for bugs: side effects

 So far we haven’t had them

o You’ll wish we didn’t…

 Need to talk about how a computer actually stores information

o OCaml support for side effects

 We've been working with the purely functional fragment of OCaml.

o That is, we've been working with the subset of the language that

does not include computational effects (also known as side effects)

other than printing.

 In particular, whenever we coded a function, we never changed variables

or data.

o Rather, we always computed new data.

 For instance, when we wrote code for an abstract data type such as a

stack, queue, or dictionary, the operations to insert an item into the data

structure didn't affect the old copy of the data structure.

 Instead, we always built a new data structure with the item appropriately

inserted.

o (Note that the new data structure might refer to the old data

structure, so this isn't as inefficient as it first sounds.)

3

 For the most part, coding in a functional style (i.e., without side effects) is a

"good thing" because it's easier to reason locally about the behavior of the

code.

o For instance, when we code purely functional queues or stacks, we

don't have to worry about a non-local change to a queue or stack.

o However, in some situations, it is more efficient or clearer to

destructively modify a data structure than to build a new version.

o In these situations, we need some form of mutable data structures.

 Like most imperative programming languages, OCaml provides support for

mutable data structures,

o Unlike languages such as C, C++, or Java, they are not the default.

 Thus, programmers encouraged to code purely functionally by default

o only resort to mutable data structures when absolutely necessary.

o In addition, unlike imperative languages, OCaml provides no support

for mutable variables.

 In other words, the value of a variable cannot change in OCaml. Rather, all

mutations must occur through data structures.

 There are only two built-in mutable data structures in OCaml: refs and

arrays.

4

 OCaml supports imperative programming through the primitive

parameterized ref type.

o A value of type "int ref" is a pointer to a location in memory, where

the location in memory contains an integer.

 It's analogous to "int*" in C/C++ or "Integer" in Java (but not

"int" in Java).

 Like lists, refs are polymorphic, so in fact, we can have a ref

(i.e., pointer) to a value of any type.

 A partial signature for refs is below:

module type REF =
 sig
 type 'a ref

 (* ref(x) creates a new ref containing x *)
 val ref : 'a -> 'a ref

 (* !x is the contents of the ref cell x *)
 val (!) : 'a ref -> 'a

 (* Effects: x := y updates the contents of x
 * so it contains y. *)
 val (:=) : 'a ref * 'a -> unit
 end

5

 A ref is like a box that can store a single value. By using the := operator, the

value in the box can be changed as a side effect.

o It is important to distinguish between the value that is stored in the

box, and the box itself.

o A ref is the simplest mutable data structure.

o A mutable data structure is one that can be changed imperatively,

or mutated.

 The following code shows an example where we use a ref:

let x : int ref = ref 3 in
 let y : int = !x in
 (x := (!x) + 1);
 y + (!x)
 end

 The code above evaluates to 7. Let's see why:

o The first line "let x:int ref = ref 3" creates a new ref cell, initializes the

contents to 3, and then returns a reference (i.e., pointer) to the cell

and binds it to x.

o The second line "let y:int = !x" reads the contents of the cell

referenced by x, returns 3, and then binds it to y.

o The third line "x := (!x) + 1;" evaluates "!x" to get 3, adds one to it to

get 4, and then sets the contents of the cell referenced by x to this

value.

o The fourth line "y + (!x)" returns the sum of the values y (i.e., 3) and

the contents of the cell referenced by x (4).

o Thus, the whole expression evaluates to 7.

6

 Here's an example of a mutable stack build using refs:

module type MUTABLE_STACK =
 sig
 (* An 'a mstack is a mutable stack of 'a elements *)
 type 'a mstack
 (* new() is a new empty stack *)
 val new : unit -> 'a mstack
 (* Effects: push(m,x) pushes x onto m *)
 val push : 'a mstack * 'a -> unit
 (* pop(m) is the head of m.
 * Effects: pops the head off the stack. *)
 val pop : 'a mstack -> 'a option
 end

 module Mutable_Stack : MUTABLE_STACK =
 struct
 (* A mutable stack is a reference
 * to the list of values, with the top
 * of the stack at the head. *)
 type 'a mstack = ('a list) ref
 let new():'a mstack = ref([])
 let push(s:'a mstack, x:'a):unit =
 s := x::(!s)
 let pop(s:'a stack):'a option =
 match (!s) with
 [] => NONE
 | hd::tl => (s := tl; SOME(hd))
 end

 A good exercise for you is to implement mutable versions of queues,

priority queues, dictionaries, or any other data structure that we've seen in

class thus far using refs

7

 Substitution model and refs

 The substitution model that we've seen so far explains how computation

works as long as no imperative features of OCaml are used.

o This model describes computation as a sequence of rewrite steps in

which a program subexpression is replaced by another until no

further rewrites are possible.

o However, imperative features introduce the possibility of state : an

executing OCaml program is accompanied by a current memory state

that also changes as computation proceeds.

 We don't want to get into the details of how memory heaps work yet, so

we will use a simple abstract model of state.

o A memory M is a collection of memory cells each with its own unique

name.

o We will call these names locations; a location is an abstract version

of a memory address at the hardware level.

o Given a location, we can look up in the memory what value is stored

at that location.

o As the program executes, the contents of some memory locations

may change.

8

 One way to visualize the execution is the memory consists of a large

(actually, infinite) number of boxes, each of which can contain a single

value.

o At any given point during execution, some boxes are in use and

others are empty.

o Each box has a unique name (its location) and this location can be

used to find the single box with that name.

o Given a memory, we can always find a box that is unused.

 Ref operations

 There are three principal operations on references: creation using

the ref operator, deferencing using !, and update using :=.

o Each of these operations has an associated reduction that is used

when evaluating it.

o In order to explain what these operations do, a new kind of

expression is needed, representing a location.

 We will write the syntactic metavariable loc to represent a location.

o For the purposes of explaining how to evaluate OCaml, we assume

that there is an infinitely large set of locations (called Loc) available

for use when evaluating programs, even though the actual memory is

finite.

o We don't care what the elements of Loc actually are. We can think of

them as memory addresses, as integers, or even as strings. All that

matters is that we can tell two different elements of Loc apart.

9

ref

 The ref operation creates a new location. It is reduced once its argument is

a value, creating a new location.

ref v --> loc

 The new location loc is one that is unused in the current memory.

o This evaluation step also has a side effect: the memory cell

named loc is made to contain the value v.

 This rule introduces a loc expression into the running program.

o This is a bit different from all the evaluation rules that we have seen

till this point, because a loc expression cannot occur in the original

OCaml program.

 This isn't a problem; we have to remember that our models of evaluation

are useful fictions.

o As long as the model gives the right answer for what happens when

the program runs, we are satisfied.

o In OCaml, if a program evaluates to a location, it is printed as a ref

expression (example below)

 Equality on references in OCaml is slightly odd. If we test two expressions of

the type 'a ref using =, OCaml will actually check if their contents are equal.

 This is generally what you want, but you can also use == to check if the refs

themselves are equal (i.e., if the two refs point to the same block of

memory).

let a = ref 2;;
val a : int ref = {contents = 2}
let b = ref 2;;
val b : int ref = {contents = 2}
a = b;;
- : bool = true
a == b;;
- : bool = false

!

10

 The dereference (!) operation finds the value stored at a given location:

! loc --> v

 Of course, the value v that replaces the subexpression !loc is the value

found in the memory cell named loc.

:=

 The update (:=) operation updates the value stored at a given location:

loc := v --> ()

 It evaluates to the unit value, but has the side effect of updating the

memory location named loc to contain v.

11

Example

 Consider the following OCaml example:

let x = ref 0 in
let y = x in
 x := 1;
 !y
end

 What does this evaluate to? We can use the model about to figure it out:

let x = ref 0 in
let y = x in
 x := 1; !y
end
Memory: (empty)
-->
let x = loc1 in
let y = x in
 x := 1; !y
end
Memory: (loc1 = 0)
--> (substitute loc1 for x)
let y = loc1 in
 loc1 := 1; !y
end
Memory: (loc1 = 0)
--> (substitute loc1 for y)
loc1 := 1; !loc1
Memory: (loc1 = 0)
--> !loc1
Memory: (loc1 = 1)
--> 1
Memory: (loc1 = 1)

