Announcements:

- PS3 due Thursday 11:59PM
  - Testing will start sometime Friday morning
  - Return is likely to be delayed due to Fall break
- Quiz #3 in class Tue Oct 18
- Prelim #1 comments
  - Good: induction
  - Bad: Dijkstra
  - Ugly: user defined types (!)
Binary search trees

A binary tree is easy to define inductively in OCaml. We will use the following definition which represents a node as a triple of a value and two children, and which explicitly represents leaf nodes.

```
type 'a tree = TNode of 'a * 'a tree * 'a tree | TLeaf
```

A binary search tree is a binary tree with the following representation invariant: For any node \( n \), every node in the left subtree of \( n \) has a value less than that of \( n \), and every node in the right subtree of \( n \) has a value more than that of \( n \).

Note that this is a rep invariant! The type system doesn’t enforce this but you need it to be true.

Given such a tree, how do you perform a lookup operation?

Start from the root, and at every node, if the value of the node is what you are looking for, you are done; otherwise, recursively look up in the left or right subtree depending on the value stored at the node.

In code:

```
let rec contains x = function
  | TLeaf -> false
  | TNode (y, l, r) ->
    if x = y then true
    else if x < y then contains x l
    else contains x r
```

Note the use of the keyword function so that the variable used in the pattern matching need not be named. This is equivalent to (unnecessarily) naming a variable and then using match:

```
let rec contains x t =
  match t with
  | TLeaf -> false
  | TNode (y, l, r) ->
    if x = y then true
    else if x < y then contains x l
    else contains x r
```
Adding an element is similar: you perform a lookup until you find the empty node that should contain the value.

This is a nondestructive update, so as the recursion completes, a new tree is constructed that is just like the old one except that it has a new node (if needed):

```ocaml
let rec add x = function
  | TLeaf -> TNode (x, TLeaf, TLeaf) (* When get to leaf, put new node there *)
  | TNode (y, l, r) as t -> (* Recursively search for value *)
    if x=y then t
    else if x > y then TNode (y, l, add x r)
    else (* x < y *) TNode (y, add x l, r)
```

What is the running time of those operations? Since `add` is just a lookup with an extra constant-time node creation, we focus on the `lookup` operation. Clearly, the run time of `lookup` is $O(h)$, where $h$ is the height of the tree.

What’s the worst-case height of a tree? Clearly, a tree of $n$ nodes all in a single long branch (imagine adding the numbers 1,2,3,4,5,6,7 in order into a binary search tree). So the worst-case running time of lookup is still $O(n)$ (for $n$ the number of nodes in the tree).
What is a good shape for a tree that would allow for fast lookup?

A **perfect binary tree** has the largest number of nodes \( n \) for a given height \( h \): \( n = 2^{h+1} - 1 \). Therefore \( h = \log_2(n+1)-1 = O(\log n) \).

![Diagram of a perfect binary tree](image)

If a tree with \( n \) nodes is kept balanced, its height is \( O(\log n) \), which leads to a lookup operation running in time \( O(\log n) \).

How can we keep a tree balanced? It can become unbalanced during element addition or deletion. Most balanced tree schemes involve adding or deleting an element just like in a normal binary search tree, followed by some kind of tree surgery to rebalance the tree. Some examples of balanced binary search tree data structures include

- AVL (or height-balanced) trees (1962)
- 2-3 trees (1970's)
- Red-black trees (1970's)

In each of these, we ensure asymptotic complexity of \( O(\log n) \) by enforcing a stronger invariant on the data structure than just the binary search tree invariant.
- **Red black trees:**

- Recall that BST’s work well when balanced,
  - But if you insert in the wrong order (sorted) you basically get a stupid representation of a list

- Solution: self-balancing trees
  - AVL trees, or red-black trees are most popular
- They are guaranteed to stay approximately balanced
  - Achieve this by rotations

- RB trees have the longest path from the root to any leaf is no more than twice the shortest path

- RB tree **rep invariant:**
  - A. Nodes are red or black
  - B. Root and leaves are black
  - C. Children of red are black
  - D. Every path from a node to a leaf beneath it has the same number of black nodes (but not necessarily red)

- Notes:
  - You don’t need red nodes.
    - So the shortest path from root to leaf will be purely black.
  - Because of C, the longest path will be B-R-B-R…B, which has m black nodes and m-1 red ones.
type color = Red | Black

type 'a rbtree = Node of color * 'a * 'a rbtree * 'a rbtree | Leaf

let rec mem x = function
    Leaf -> false
    | Node (_, y, left, right) ->
        x = y || (x < y && mem x left) || (x > y && mem x right)

• Like a BST except nodes also have a color
• Insert works like BST (find where it should go, insert a leaf)
    • But what about color?

• Three steps:
    • 1. Replace leaf with red node with two leaves underneath it
        ▪ Both are black, so C is true

    • 2. Balance the result, i.e. ensure that C is true again
        ▪ For example, if the parent of the leaf was red, we now have red under red and C is false

    • 3. For the root to be black
Balancing is the tricky part.
  
  - We need to ensure that a red node has no red children.
  - There are 4 cases we need to handle, but we do the same thing.
let balance = function
  Black, z, Node (Red, y, Node (Red, x, a, b), c), d
| Black, z, Node (Red, x, a, Node (Red, y, b, c)), d
| Black, x, a, Node (Red, z, Node (Red, y, b, c), d)
| Black, x, a, Node (Red, y, b, Node (Red, z, c, d)) ->
  Node (Red, y, Node (Black, x, a, b), Node (Black, z, c, d))
| a, b, c, d ->
  Node (a, b, c, d)

let insert x s =
  let rec ins = function
    Leaf -> Node (Red, x, Leaf, Leaf)
  | Node (color, y, a, b) as s ->
    if x < y then balance (color, y, ins a, b)
    else if x > y then balance (color, y, a, ins b)
    else s
  in
  match ins s with
    Node (_, y, a, b) ->
      Node (Black, y, a, b)
  | Leaf -> (* guaranteed to be nonempty *)
      raise (Failure "RBT insert failed with ins returning leaf")