
1

Announcements:

 PS3 due Thursday 11:59PM

o Testing will start sometime Friday morning

o Return is likely to be delayed due to Fall break

 Quiz #3 in class Tue Oct 18

 Prelim #1 comments

o Good: induction

o Bad: Dijkstra

o Ugly: user defined types (!)

2

Binary search trees

A binary tree is easy to define inductively in OCaml. We will use the following definition which represents a
node as a triple of a value and two children, and which explicitly represents leaf nodes.

type 'a tree = TNode of 'a * 'a tree * 'a tree | TLeaf

A binary search tree is a binary tree with the following representation invariant: For any node n, every

node in the left subtree of n has a value less than that of n, and every node in the right subtree of n has a

value more than that of n.

Note that this is a rep invariant! The type system doesn’t enforce this but you need it to be true.

Given such a tree, how do you perform a lookup operation?

Start from the root, and at every node, if the value of the node is what you are looking for, you are done;

otherwise, recursively look up in the left or right subtree depending on the value stored at the node.

In code:

let rec contains x = function

 TLeaf -> false

 | TNode (y, l, r) ->

 if x=y then true else if x < y then contains x l else contains x r

Note the use of the keyword function so that the variable used in the pattern matching need not be

named. This is equivalent to (unneccessarily) naming a variable and then using match:

let rec contains x t =

 match t with

 TLeaf -> false

 | TNode (y, l, r) ->

 if x=y then true else if x < y then contains x l else contains x r

3

Adding an element is similar: you perform a lookup until you find the empty node that should contain the

value.

This is a nondestructive update, so as the recursion completes, a new tree is constructed that is just like

the old one except that it has a new node (if needed):

let rec add x = function

 TLeaf -> TNode (x, TLeaf, TLeaf) (* When get to leaf, put new node

there *)

 | TNode (y, l, r) as t -> (* Recursively search for value *)

 if x=y then t

 else if x > y then TNode (y, l, add x r)

 else (* x < y *) TNode (y, add x l, r)

What is the running time of those operations? Since add is just a lookup with an extra constant-time

node creation, we focus on the lookup operation. Clearly, the run time of lookup is O(h), where h is the

height of the tree.

What's the worst-case height of a tree? Clearly, a tree of n nodes all in a single long branch (imagine

adding the numbers 1,2,3,4,5,6,7 in order into a binary search tree). So the worst-case running time of lookup

is still O(n) (for n the number of nodes in the tree).

4

What is a good shape for a tree that would allow for fast lookup?

A perfect binary tree has the largest number of nodes n for a given height h: n = 2
h+1

-1. Therefore h =

lg(n+1)-1 = O(lg n).

 ^ 50

 | / \

 | 25 75

 height=3 | / \ / \

 n=15 | 10 30 60 90

 | / \ / \ / \ / \

 V 4 12 27 40 55 65 80 99

If a tree with n nodes is kept balanced, its height is O(lg n), which leads to a lookup operation running in

time O(lg n).

How can we keep a tree balanced? It can become unbalanced during element addition or deletion. Most

balanced tree schemes involve adding or deleting an element just like in a normal binary search tree,

followed by some kind of tree surgery to rebalance the tree. Some examples of balanced binary search tree

data structures include

 AVL (or height-balanced) trees (1962)

 2-3 trees (1970's)

 Red-black trees (1970's)

In each of these, we ensure asymptotic complexity of O(lg n) by enforcing a stronger invariant on the data

structure than just the binary search tree invariant.

5

 Red black trees:

 Recall that BST’s work well when balanced,

o But if you insert in the wrong order (sorted) you basically get a stupid

representation of a list

 Solution: self-balancing trees

o AVL trees, or red-black trees are most popular

 They are guaranteed to stay approximately balanced

o Achieve this by rotations

 RB trees have the longest path from the root to any leaf is no more than

twice the shortest path

 RB tree rep invariant:

o A. Nodes are red or black

o B. Root and leaves are black

o C. Children of red are black

o D. Every path from a node to a leaf beneath it has the same number

of black nodes (but not necessarily red)

 Notes:

o You don’t need red nodes.

 So the shortest path from root to leaf will be purely black.

o Because of C, the longest path will be B-R-B-R…B, which has m black

nodes and m-1 red ones.

6

type color = Red | Black

type 'a rbtree = Node of color * 'a * 'a rbtree * 'a rbtree | Leaf

let rec mem x = function
 Leaf -> false
 | Node (_, y, left, right) ->
 x = y || (x < y && mem x left) || (x > y && mem x
right)

o Like a BST except nodes also have a color

 Insert works like BST (find where it should go, insert a leaf)

o But what about color?

 Three steps:

o 1. Replace leaf with red node with two leaves underneath it

 Both are black, so C is true

o 2. Balance the result, i.e. ensure that C is true again

 For example, if the parent of the leaf was red, we now have

red under red and C is false

o 3. For the root to be black

7

 Balancing is the tricky part.

o We need to ensure that a red node has no red children.

o There are 4 cases we need to handle, but we do the same thing.

8

let balance = function
 Black, z, Node (Red, y, Node (Red, x, a, b), c), d
 | Black, z, Node (Red, x, a, Node (Red, y, b, c)), d
 | Black, x, a, Node (Red, z, Node (Red, y, b, c), d)
 | Black, x, a, Node (Red, y, b, Node (Red, z, c, d)) ->
 Node (Red, y, Node (Black, x, a, b), Node (Black, z, c, d))
 | a, b, c, d ->
 Node (a, b, c, d)

let insert x s =
 let rec ins = function
 Leaf -> Node (Red, x, Leaf, Leaf)
 | Node (color, y, a, b) as s ->
 if x < y then balance (color, y, ins a, b)
 else if x > y then balance (color, y, a, ins b)
 else s
 in
 match ins s with
 Node (_, y, a, b) ->
 Node (Black, y, a, b)
 | Leaf -> (* guaranteed to be nonempty *)
 raise (Failure "RBT insert failed with ins returning leaf")

