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Announcements: 

 PS3 due Thursday 11:59PM 

o Testing will start sometime Friday morning 

o Return is likely to be delayed due to Fall break 

 Quiz #3 in class Tue Oct 18 

 Prelim #1 comments 

o Good: induction 

o Bad: Dijkstra 

o Ugly: user defined types (!) 
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Binary search trees 

A binary tree is easy to define inductively in OCaml. We will use the following definition which represents a 
node as a triple of a value and two children, and which explicitly represents leaf nodes. 
 

type 'a tree = TNode of 'a * 'a tree * 'a tree | TLeaf 

 

A binary search tree is a binary tree with the following representation invariant: For any node n, every 

node in the left subtree of n has a value less than that of n, and every node in the right subtree of n has a 

value more than that of n. 

 

Note that this is a rep invariant! The type system doesn’t enforce this but you need it to be true. 

 

Given such a tree, how do you perform a lookup operation?  

Start from the root, and at every node, if the value of the node is what you are looking for, you are done; 

otherwise, recursively look up in the left or right subtree depending on the value stored at the node.  

In code: 

let rec contains x = function 

    TLeaf -> false 

  | TNode (y, l, r) -> 

      if x=y then true else if x < y then contains x l else contains x r 

 

Note the use of the keyword function so that the variable used in the pattern matching need not be 

named. This is equivalent to (unneccessarily) naming a variable and then using match: 

 

let rec contains x t = 

  match t with 

      TLeaf -> false 

    | TNode (y, l, r) -> 

        if x=y then true else if x < y then contains x l else contains x r 
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Adding an element is similar: you perform a lookup until you find the empty node that should contain the 

value.  

 

This is a nondestructive update, so as the recursion completes, a new tree is constructed that is just like 

the old one except that it has a new node (if needed): 

 

let rec add x = function 

    TLeaf -> TNode (x, TLeaf, TLeaf) (* When get to leaf, put new node 

there *) 

  | TNode (y, l, r) as t -> (* Recursively search for value *) 

      if x=y then t 

      else if x > y then TNode (y, l, add x r) 

      else (* x < y *) TNode (y, add x l, r) 

 

What is the running time of those operations? Since add is just a lookup with an extra constant-time 

node creation, we focus on the lookup operation. Clearly, the run time of lookup is O(h), where h is the 

height of the tree.  

 

What's the worst-case height of a tree? Clearly, a tree of n nodes all in a single long branch (imagine 

adding the numbers 1,2,3,4,5,6,7 in order into a binary search tree). So the worst-case running time of lookup 

is still O(n) (for n the number of nodes in the tree). 
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What is a good shape for a tree that would allow for fast lookup?  

A perfect binary tree has the largest number of nodes n for a given height h: n = 2
h+1

-1. Therefore h = 

lg(n+1)-1 = O(lg n). 

          ^                   50 

          |               /        \ 

          |           25              75 

 height=3 |         /    \          /    \ 

  n=15    |       10     30        60     90 

          |      /  \   /  \      /  \   /  \ 

          V     4   12 27  40    55  65 80  99 

 

If a tree with n nodes is kept balanced, its height is O(lg n), which leads to a lookup operation running in 

time O(lg n). 

 

How can we keep a tree balanced? It can become unbalanced during element addition or deletion. Most 

balanced tree schemes involve adding or deleting an element just like in a normal binary search tree, 

followed by some kind of tree surgery to rebalance the tree. Some examples of balanced binary search tree 

data structures include 

 AVL (or height-balanced) trees (1962) 

 2-3 trees (1970's) 

 Red-black trees (1970's) 

In each of these, we ensure asymptotic complexity of O(lg n) by enforcing a stronger invariant on the data 

structure than just the binary search tree invariant. 
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 Red black trees: 

 

 Recall that BST’s work well when balanced,  

o But if you insert in the wrong order (sorted) you basically get a stupid 

representation of a list 

 

 Solution: self-balancing trees 

o AVL trees, or red-black trees are most popular 

 They are guaranteed to stay approximately balanced 

o Achieve this by rotations 

 

 RB trees have the longest path from the root to any leaf is no more than 

twice the shortest path 

 RB tree rep invariant: 

o A. Nodes are red or black 

o B. Root and leaves are black 

o C. Children of red are black 

o D. Every path from a node to a leaf beneath it has the same number 

of black nodes (but not necessarily red) 

 

 Notes: 

o You don’t need red nodes.  

 So the shortest path from root to leaf will be purely black. 

o Because of C, the longest path will be B-R-B-R…B, which has m black 

nodes and m-1 red ones. 
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type color = Red | Black 
 
type 'a rbtree = Node of color * 'a * 'a rbtree * 'a rbtree | Leaf 
 

let rec mem x = function 
    Leaf -> false 
  | Node (_, y, left, right) -> 
      x = y || (x < y && mem x left) || (x > y && mem x 
right) 

o Like a BST except nodes also have a color 

 Insert works like BST (find where it should go, insert a leaf) 

o But what about color? 

 

 Three steps: 

o 1. Replace leaf with red node with two leaves underneath it 

 Both are black, so C is true 

 

o 2. Balance the result, i.e. ensure that C is true again 

 For example, if the parent of the leaf was red, we now have 

red under red and C is false 

 

o 3. For the root to be black 
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 Balancing is the tricky part.  

o We need to ensure that a red node has no red children. 

o There are 4 cases we need to handle, but we do the same thing. 
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let balance = function 
    Black, z, Node (Red, y, Node (Red, x, a, b), c), d 
  | Black, z, Node (Red, x, a, Node (Red, y, b, c)), d 
  | Black, x, a, Node (Red, z, Node (Red, y, b, c), d) 
  | Black, x, a, Node (Red, y, b, Node (Red, z, c, d)) -> 
      Node (Red, y, Node (Black, x, a, b), Node (Black, z, c, d)) 
  | a, b, c, d -> 
      Node (a, b, c, d) 
 
let insert x s = 
  let rec ins = function 
      Leaf -> Node (Red, x, Leaf, Leaf) 
    | Node (color, y, a, b) as s -> 
 if x < y then balance (color, y, ins a, b) 
 else if x > y then balance (color, y, a, ins b) 
 else s 
  in 
    match ins s with 
 Node (_, y, a, b) -> 
   Node (Black, y, a, b) 
      | Leaf -> (* guaranteed to be nonempty *) 
   raise (Failure "RBT insert failed with ins returning leaf") 

 


