Announcements:

- PS3 due Thursday 11:59PM
- Testing will start sometime Friday morning
- Return is likely to be delayed due to Fall break
- Quiz \#3 in class Tue Oct 18
- Prelim \#1 comments
- Good:induction
- Bad: Dijkstra
- Ugly: user defined types (!)

Binary search trees

A binary tree is easy to define inductively in OCaml. We will use the following definition which represents a node as a triple of a value and two children, and which explicitly represents leaf nodes.

```
type 'a tree = TNode of 'a * 'a tree * 'a tree | TLeaf
```

A binary search tree is a binary tree with the following representation invariant: For any node n, every node in the left subtree of n has a value less than that of n, and every node in the right subtree of n has a value more than that of n.

Note that this is a rep invariant! The type system doesn't enforce this but you need it to be true.

Given such a tree, how do you perform a lookup operation?
Start from the root, and at every node, if the value of the node is what you are looking for, you are done; otherwise, recursively look up in the left or right subtree depending on the value stored at the node.

In code:

```
let rec contains x = function
    TLeaf -> false
    | TNode (y, l, r) ->
        if x=y then true else if x < y then contains x l else contains x r
```

Note the use of the keyword function so that the variable used in the pattern matching need not be named. This is equivalent to (unneccessarily) naming a variable and then using match:

```
let rec contains x t =
    match t with
        TLeaf -> false
        | TNode (y, l, r) ->
        if x=y then true else if x < y then contains x l else contains x r
```

Adding an element is similar: you perform a lookup until you find the empty node that should contain the value.

This is a nondestructive update, so as the recursion completes, a new tree is constructed that is just like the old one except that it has a new node (if needed):

```
let rec add x = function
    TLeaf -> TNode (x, TLeaf, TLeaf) (* When get to leaf, put new node
there *)
    | TNode (y, l, r) as t -> (* Recursively search for value *)
        if x=y then t
        else if x > y then TNode (y, l, add x r)
        else (* x < y *) TNode (y, add x l, r)
```

What is the running time of those operations? Since add is just a lookup with an extra constant-time node creation, we focus on the lookup operation. Clearly, the run time of lookup is $O(h)$, where h is the height of the tree.

What's the worst-case height of a tree? Clearly, a tree of n nodes all in a single long branch (imagine adding the numbers $1,2,3,4,5,6,7$ in order into a binary search tree). So the worst-case running time of lookup is still $O(n)$ (for n the number of nodes in the tree).

What is a good shape for a tree that would allow for fast lookup?
A perfect binary tree has the largest number of nodes n for a given height h : $n=2^{h+1}-1$. Therefore $h=$ $\lg (n+1)-1=O(\lg n)$.

If a tree with n nodes is kept balanced, its height is $O(\lg n)$, which leads to a lookup operation running in time $O(\lg n)$.

How can we keep a tree balanced? It can become unbalanced during element addition or deletion. Most balanced tree schemes involve adding or deleting an element just like in a normal binary search tree, followed by some kind of tree surgery to rebalance the tree. Some examples of balanced binary search tree data structures include

- \quad AVL (or height-balanced) trees (1962)
- 2-3 trees (1970's)
- Red-black trees (1970's)

In each of these, we ensure asymptotic complexity of $O(\lg n)$ by enforcing a stronger invariant on the data structure than just the binary search tree invariant.

- Red black trees:
- Recall that BST's work well when balanced,
- But if you insert in the wrong order (sorted) you basically get a stupid representation of a list
- Solution: self-balancing trees
- AVL trees, or red-black trees are most popular
- They are guaranteed to stay approximately balanced
- Achieve this by rotations
- RB trees have the longest path from the root to any leaf is no more than twice the shortest path
- RB tree rep invariant:
- A. Nodes are red or black
- B. Root and leaves are black
- C. Children of red are black
- D. Every path from a node to a leaf beneath it has the same number of black nodes (but not necessarily red)
- Notes:
- You don't need red nodes.
- So the shortest path from root to leaf will be purely black.
- Because of C, the longest path will be $B-R-B-R . . . B$, which has m black nodes and m-1 red ones.

```
type color = Red | Black
type 'a rbtree = Node of color * 'a * 'a rbtree * 'a rbtree | Leaf
let rec mem x = function
    Leaf -> false
    | Node (_, y, left, right) ->
        x = y || (x < y && mem x left) || (x > y && mem x
right)
- Like a BST except nodes also have a color
- Insert works like BST (find where it should go, insert a leaf)
- But what about color?
```

- Three steps:
- 1. Replace leaf with red node with two leaves underneath it
- Both are black, so C is true
- 2. Balance the result, i.e. ensure that C is true again
- For example, if the parent of the leaf was red, we now have red under red and C is false
- 3. For the root to be black
- Balancing is the tricky part.
- We need to ensure that a red node has no red children.
- There are 4 cases we need to handle, but we do the same thing.


```
let balance = function
    Black, z, Node (Red, y, Node (Red, x, a, b), c), d
    | Black, z, Node (Red, x, a, Node (Red, y, b, c)), d
    | Black, x, a, Node (Red, z, Node (Red, y, b, c), d)
    | Black, x, a, Node (Red, y, b, Node (Red, z, c, d)) ->
        Node (Red, y, Node (Black, x, a, b), Node (Black, z, c, d))
    a, b, c, d ->
        Node (a, b, c, d)
1et insert x s =
    let rec ins = function
        Leaf -> Node (Red, x, Leaf, Leaf)
        | Node (color, y, a, b) as s ->
        if x < y then balance (color, y, ins a, b)
        else if x > y then balance (color, y, a, ins b)
        else s
    in
        match ins s with
        Node (_, y, a, b) ->
            Node (Black, y, a, b)
            | Leaf -> (* guaranteed to be nonempty *)
                raise (Failure "RBT insert failed with ins returning leaf")
```

