
1

Announcements:

 Prelim #1 tonight!

o Conflict exam: 5:45-7:15 in 315 Upson

 Only for people with conflicts

o Main exam: 7:30-9:00 in Goldwin Smith Hall G64

o Graded (late) tonight, back in section tomorrow

 PS3 due Thursday 11:59PM

o Testing will start sometime Friday morning

o Return is likely to be delayed due to Fall break

 Quiz #3 in class Tue Oct 18

2

Minimal correct induction proof

Example problem you might see on a prelim:

Recall that for any natural number n, we define n! as n(n-1)(n-2)..., where 0! = 1. Write a recursive

definition fact n that computes n!, and prove your definition is correct using induction and the substitution

model.

Solution:

let rec fact(n) = if n=0 then 1 else n*fact(n-1)

* Statement P[n]: the value of the OCaml expression fact(n) is n!

* Variable we are doing induction on: n, starting at 0

* Base case: we prove P[0] as follows

 fact(0)

 b.s.m. (substitute) is

 if 0=0 then 1 else 0*fact(0-1)

 b.s.m. (primitives) is

 if true then 1 else 0*fact(0-1)

 b.s.m. (if) is

 1

 So the value of the expression fact(0) is 1 which is 0!

* Induction step:

 Pick an n >=0 and assume P[n], then prove P[n+1]

 fact(n+1)

 b.s.m. (substitute) is

 if n+1=0 then 1 else n+1*fact(n+1-1)

 Since n >= 0 the value of the expression n+1=0 is false

 b.s.m. (if) is

 n+1*fact(n+1-1)

 b.s.m. (primitives) is

 n+1*fact(n)

 By the induction hypothesis P[n] the value of fact(n) is n! so this is

 n+1*n!

 which is n+1!

3

 You’ve seen binary trees in CS2110

 Let’s look at a data structure called a “trie”

 A trie is a “finite map”, like a dictionary. It maps keys to values. Typically for

a trie the keys are strings and the values are numbers.

 A trie is sometimes called a “prefix tree”. The basic idea is that a path

through the tree represents a prefix, i.e. all strings that start with a

particular substring.

o Root is the empty string

 Example:

 This trie is the finite map {"to"->7, "tea"->3, "ten"->12, "in"->5,

"inn"->9}

o As you saw in CS2110, tree-like data structures of this form are very

efficient when they are balanced

o Note that a trie doesn’t need to be binary, though this one is

o In fact, 26 children or so (capitalization, punctuation)

 A trie is very efficient when there are lots of shared prefixes

o Occurs in many situations (letters, genes, IP addresses)

 Lookup operation is obvious. Insert and delete are surprisingly similar.

Everything takes time O(L), which is the length of the longest entry.

 This is a huge advantage of a trie. Most data structures have very

asymmetric costs for lookup/insert/delete, so you need to pick the right

one for your application carefully.

4

 Also note that if you don’t find what you are looking for you know

something close to it. Useful for, e.g., spell checking.

 Important variant: radix tree (aka Patricia trie), where we ensure that every

internal node has 2 or more children by merging nodes with 1 child

 Sub-variant: store at the end “black” or “white”. Then you can use this to

encode strings that are present and also strings that are absent. Application

is for IP routing tables.

5

 We will go over the trie signature in section.

 An important idea, both in the trie and point example, is what is called a

REP INVARIANT. This is a property of the representation that must be

satisfied for the representation to be valid. For example, in our radix tree

example, a node must have 2 or more children, and never 1 (could be 0 if

it’s a leaf).

 You will typically want to implement this with a function repOK that returns

its argument or raises an exception.

 Check this on all inputs and on output.

o This sanity check seems wasteful, and you can turn it off in

production code (for example by making repOK into the identity

function).

o But it will catch a ton of subtle bugs

 Example: lists without duplicates, or in sorted order

o In a certain sense these are types, but they can’t be checked at

compile time.

o Another example: even numbers, or prime numbers, or even natural

or whole numbers

6

 But let’s now return to the idea of designing a proper specification.

 Deceptively simple example: square root function, float->float

 Spec: beyond the types, what is true before we call sqrt (precondition)

o What is true after (postcondition)

 What is the actual spec?

o Positive input

o Returns “closest” positive float whose square is x

 Sort of…

 What if the spec is violated?

o Return something arbitrary? Rarely the right answer

o Should raise an exception, in general

o IEEE actually defines an “out of band” value, NaN

