Announcements:

e Prelim #1 tonight!

o Conflict exam: 5:45-7:15 in 315 Upson

= Only for people with conflicts

o Main exam: 7:30-9:00 in Goldwin Smith Hall G64

o Graded (late) tonight, back in section tomorrow
e PS3 due Thursday 11:59PM

o Testing will start sometime Friday morning

o Returnis likely to be delayed due to Fall break
e Quiz#3inclass Tue Oct 18



Minimal correct induction proof

Example problem you might see on a prelim:

Recall that for any natural number n, we define n! as n(n-1)(n-2)..., where 0! = 1. Write a recursive
definition fact n that computes n!, and prove your definition is correct using induction and the substitution
model.

Solution:
let rec fact(n) = if n=0 then 1 else n*fact(n-1)

* Statement P[n]: the value of the OCaml expression fact(n) is n!
* Variable we are doing induction on: n, starting at O
* Base case: we prove P[0] as follows
fact(0)
b.s.m. (substitute) is
if 0=0 then 1 else 0*fact(0-1)
b.s.m. (primitives) is
if true then 1 else 0*fact(0-1)
b.s.m. (if) is
1
So the value of the expression fact(0) is 1 which is 0!
* Induction step:
Pick an n >=0 and assume P[n], then prove P[n+1]
fact(n+1)
b.s.m. (substitute) is
if n+1=0 then 1 else n+1*fact(n+1-1)
Since n >= 0 the value of the expression n+1=0 is false
b.s.m. (if) is
n+1*fact(n+1-1)
b.s.m. (primitives) is
n+1*fact(n)
By the induction hypothesis P[n] the value of fact(n) is n! so this is
n+1*n!
which is n+1!



You’ve seen binary trees in C52110
Let’s look at a data structure called a “trie”
A trie is a “finite map”, like a dictionary. It maps keys to values. Typically for
a trie the keys are strings and the values are numbers.
A trie is sometimes called a “prefix tree”. The basic idea is that a path
through the tree represents a prefix, i.e. all strings that start with a
particular substring.

o Root is the empty string
Example:

3 12 g

This trie is the finite map {"to"->7, "tea"->3, "ten"->12, "in"->5,
"inn"->9}

o Asyousaw in CS2110, tree-like data structures of this form are very

efficient when they are balanced

o Note that a trie doesn’t need to be binary, though this one is

o Infact, 26 children or so (capitalization, punctuation)
A trie is very efficient when there are lots of shared prefixes

o Occurs in many situations (letters, genes, IP addresses)
Lookup operation is obvious. Insert and delete are surprisingly similar.
Everything takes time O(L), which is the length of the longest entry.
This is a huge advantage of a trie. Most data structures have very
asymmetric costs for lookup/insert/delete, so you need to pick the right
one for your application carefully.



Also note that if you don’t find what you are looking for you know
something close to it. Useful for, e.g., spell checking.

Important variant: radix tree (aka Patricia trie), where we ensure that every
internal node has 2 or more children by merging nodes with 1 child
Sub-variant: store at the end “black” or “white”. Then you can use this to
encode strings that are present and also strings that are absent. Application
is for IP routing tables.



We will go over the trie signature in section.

An important idea, both in the trie and point example, is what is called a
REP INVARIANT. This is a property of the representation that must be
satisfied for the representation to be valid. For example, in our radix tree
example, a node must have 2 or more children, and never 1 (could be O if
it’s a leaf).

You will typically want to implement this with a function repOK that returns
its argument or raises an exception.

Check this on all inputs and on output.

o This sanity check seems wasteful, and you can turn it off in
production code (for example by making repOK into the identity
function).

o But it will catch a ton of subtle bugs

Example: lists without duplicates, or in sorted order

o Ina certain sense these are types, but they can’t be checked at
compile time.

o Another example: even numbers, or prime numbers, or even natural
or whole numbers



But let’s now return to the idea of designing a proper specification.
Deceptively simple example: square root function, float->float
Spec: beyond the types, what is true before we call sqrt (precondition)

o What is true after (postcondition)
What is the actual spec?

o Positive input

o Returns “closest” positive float whose square is x

= Sort of...

What if the spec is violated?

o Return something arbitrary? Rarely the right answer

o Should raise an exception, in general

o |EEE actually defines an “out of band” value, NaN



