Announcements:

- Prelim \#1 tonight!
- Conflict exam: 5:45-7:15 in 315 Upson
- Only for people with conflicts
- Main exam: 7:30-9:00 in Goldwin Smith Hall G64
- Graded (late) tonight, back in section tomorrow
- PS3 due Thursday 11:59PM
- Testing will start sometime Friday morning
- Return is likely to be delayed due to Fall break
- Quiz \#3 in class Tue Oct 18

Minimal correct induction proof

Example problem you might see on a prelim:

Recall that for any natural number n, we define $n!$ as $n(n-1)(n-2) \ldots$, where $0!=1$. Write a recursive definition fact n that computes $n!$, and prove your definition is correct using induction and the substitution model.

Solution:

let rec fact $(\mathrm{n})=$ if $\mathrm{n}=0$ then 1 else n^{*} fact $(\mathrm{n}-1)$

* Statement $P[n]$: the value of the OCaml expression fact (n) is n !
* Variable we are doing induction on: n, starting at 0
* Base case: we prove $\mathrm{P}[0]$ as follows
fact(0)
b.s.m. (substitute) is
if $0=0$ then 1 else $0 *$ fact $(0-1)$
b.s.m. (primitives) is
if true then 1 else 0^{*} fact $(0-1)$
b.s.m. (if) is

1
So the value of the expression fact (0) is 1 which is 0 !

* Induction step:

Pick an $\mathrm{n}>=0$ and assume $\mathrm{P}[\mathrm{n}]$, then prove $\mathrm{P}[\mathrm{n}+1$]
fact($\mathrm{n}+1$)
b.s.m. (substitute) is
if $n+1=0$ then 1 else $n+1^{*}$ fact $(n+1-1)$
Since $n>=0$ the value of the expression $n+1=0$ is false
b.s.m. (if) is
$n+1^{*}$ fact($n+1-1$)
b.s.m. (primitives) is
n+1*fact(n)
By the induction hypothesis $\mathrm{P}[\mathrm{n}]$ the value of $\operatorname{fact}(\mathrm{n})$ is n ! so this is $n+1^{*} n$!
which is $n+1$!

- You've seen binary trees in CS2110
- Let's look at a data structure called a "trie"
- A trie is a "finite map", like a dictionary. It maps keys to values. Typically for a trie the keys are strings and the values are numbers.
- A trie is sometimes called a "prefix tree". The basic idea is that a path through the tree represents a prefix, i.e. all strings that start with a particular substring.
- Root is the empty string
- Example:

- This trie is the finite map $\{$ "to"->7, "tea"->3, "ten"->12, "in"->5, "inn"->9\}
- As you saw in CS2110, tree-like data structures of this form are very efficient when they are balanced
- Note that a trie doesn't need to be binary, though this one is
- In fact, 26 children or so (capitalization, punctuation)
- A trie is very efficient when there are lots of shared prefixes
- Occurs in many situations (letters, genes, IP addresses)
- Lookup operation is obvious. Insert and delete are surprisingly similar. Everything takes time $\mathrm{O}(\mathrm{L})$, which is the length of the longest entry.
- This is a huge advantage of a trie. Most data structures have very asymmetric costs for lookup/insert/delete, so you need to pick the right one for your application carefully.
- Also note that if you don't find what you are looking for you know something close to it. Useful for, e.g., spell checking.
- Important variant: radix tree (aka Patricia trie), where we ensure that every internal node has 2 or more children by merging nodes with 1 child
- Sub-variant: store at the end "black" or "white". Then you can use this to encode strings that are present and also strings that are absent. Application is for IP routing tables.
- We will go over the trie signature in section.
- An important idea, both in the trie and point example, is what is called a REP INVARIANT. This is a property of the representation that must be satisfied for the representation to be valid. For example, in our radix tree example, a node must have 2 or more children, and never 1 (could be 0 if it's a leaf).
- You will typically want to implement this with a function repOK that returns its argument or raises an exception.
- Check this on all inputs and on output.
- This sanity check seems wasteful, and you can turn it off in production code (for example by making repOK into the identity function).
- But it will catch a ton of subtle bugs
- Example: lists without duplicates, or in sorted order
- In a certain sense these are types, but they can't be checked at compile time.
- Another example: even numbers, or prime numbers, or even natural or whole numbers
- But let's now return to the idea of designing a proper specification.
- Deceptively simple example: square root function, float->float
- Spec: beyond the types, what is true before we call sqrt (precondition)
- What is true after (postcondition)
- What is the actual spec?
- Positive input
- Returns "closest" positive float whose square is x
- Sort of...
- What if the spec is violated?
- Return something arbitrary? Rarely the right answer
- Should raise an exception, in general
- IEEE actually defines an "out of band" value, NaN

