
1

Announcements:

 Prelim #1 tonight!

o Conflict exam: 5:45-7:15 in 315 Upson

 Only for people with conflicts

o Main exam: 7:30-9:00 in Goldwin Smith Hall G64

o Graded (late) tonight, back in section tomorrow

 PS3 due Thursday 11:59PM

o Testing will start sometime Friday morning

o Return is likely to be delayed due to Fall break

 Quiz #3 in class Tue Oct 18

2

Minimal correct induction proof

Example problem you might see on a prelim:

Recall that for any natural number n, we define n! as n(n-1)(n-2)..., where 0! = 1. Write a recursive

definition fact n that computes n!, and prove your definition is correct using induction and the substitution

model.

Solution:

let rec fact(n) = if n=0 then 1 else n*fact(n-1)

* Statement P[n]: the value of the OCaml expression fact(n) is n!

* Variable we are doing induction on: n, starting at 0

* Base case: we prove P[0] as follows

 fact(0)

 b.s.m. (substitute) is

 if 0=0 then 1 else 0*fact(0-1)

 b.s.m. (primitives) is

 if true then 1 else 0*fact(0-1)

 b.s.m. (if) is

 1

 So the value of the expression fact(0) is 1 which is 0!

* Induction step:

 Pick an n >=0 and assume P[n], then prove P[n+1]

 fact(n+1)

 b.s.m. (substitute) is

 if n+1=0 then 1 else n+1*fact(n+1-1)

 Since n >= 0 the value of the expression n+1=0 is false

 b.s.m. (if) is

 n+1*fact(n+1-1)

 b.s.m. (primitives) is

 n+1*fact(n)

 By the induction hypothesis P[n] the value of fact(n) is n! so this is

 n+1*n!

 which is n+1!

3

 You’ve seen binary trees in CS2110

 Let’s look at a data structure called a “trie”

 A trie is a “finite map”, like a dictionary. It maps keys to values. Typically for

a trie the keys are strings and the values are numbers.

 A trie is sometimes called a “prefix tree”. The basic idea is that a path

through the tree represents a prefix, i.e. all strings that start with a

particular substring.

o Root is the empty string

 Example:

 This trie is the finite map {"to"->7, "tea"->3, "ten"->12, "in"->5,

"inn"->9}

o As you saw in CS2110, tree-like data structures of this form are very

efficient when they are balanced

o Note that a trie doesn’t need to be binary, though this one is

o In fact, 26 children or so (capitalization, punctuation)

 A trie is very efficient when there are lots of shared prefixes

o Occurs in many situations (letters, genes, IP addresses)

 Lookup operation is obvious. Insert and delete are surprisingly similar.

Everything takes time O(L), which is the length of the longest entry.

 This is a huge advantage of a trie. Most data structures have very

asymmetric costs for lookup/insert/delete, so you need to pick the right

one for your application carefully.

4

 Also note that if you don’t find what you are looking for you know

something close to it. Useful for, e.g., spell checking.

 Important variant: radix tree (aka Patricia trie), where we ensure that every

internal node has 2 or more children by merging nodes with 1 child

 Sub-variant: store at the end “black” or “white”. Then you can use this to

encode strings that are present and also strings that are absent. Application

is for IP routing tables.

5

 We will go over the trie signature in section.

 An important idea, both in the trie and point example, is what is called a

REP INVARIANT. This is a property of the representation that must be

satisfied for the representation to be valid. For example, in our radix tree

example, a node must have 2 or more children, and never 1 (could be 0 if

it’s a leaf).

 You will typically want to implement this with a function repOK that returns

its argument or raises an exception.

 Check this on all inputs and on output.

o This sanity check seems wasteful, and you can turn it off in

production code (for example by making repOK into the identity

function).

o But it will catch a ton of subtle bugs

 Example: lists without duplicates, or in sorted order

o In a certain sense these are types, but they can’t be checked at

compile time.

o Another example: even numbers, or prime numbers, or even natural

or whole numbers

6

 But let’s now return to the idea of designing a proper specification.

 Deceptively simple example: square root function, float->float

 Spec: beyond the types, what is true before we call sqrt (precondition)

o What is true after (postcondition)

 What is the actual spec?

o Positive input

o Returns “closest” positive float whose square is x

 Sort of…

 What if the spec is violated?

o Return something arbitrary? Rarely the right answer

o Should raise an exception, in general

o IEEE actually defines an “out of band” value, NaN

