
1

Announcements:

 Quiz #2 back now or in section

o Many people had trouble

o Surprisingly many students didn’t take it

o Good prep for the prelim

 PS3 due Thursday 10/6 11:59PM

 Prelim #1 Tue 10/4 in Goldwin Smith Hall G64 7:30PM-9:00PM

o Returned in section

o Coverage through today’s lecture

o Review in section on Monday

o Be sure to talk to me if you have a conflict

 No makeup, but can take the exam at 6PM instead.

 What’s on the prelim?

o Eval

o Zardoz

o Dijkstra

o Induction

o Fold

o Simple problems with modules and signature

 You will get (this weekend, probably):

o A previous exam

 Warning: coverage changes slightly year-to-year

o A “full credit” induction proof

2

 You’ve seen modules, structures, signatures

o The support in OCaml for abstraction, for hiding implementation

details, and for namespace management

o Other languages have similar tools, some better, some worse

 Today we are going to talk about a small abstraction example, give a more

interesting example, then return to the general issue.

3

 Small example:

o Graphics package in C, or a similar language

o Points package for 2D points

o TA implements, Ramin uses

 Spec contains the obvious functions:

o Predicate (is this a point?)

o Constructor (make a point from x y coordinates)

o Accessors (get the x or y coordinates from a point)

o Invariants, like point_x(make_point(x,y)) = x,

point_y(make_point(x,y))=y

 TA will create an implementation of the spec

 The user (Ramin) is only supposed to rely on the documented properties of

the implementation

o And NOT on the accidental ones

 In real life, this often goes awry and results in a catastrophic software

failure

o such as Windows

4

 Let’s suppose that TA’s initial implementation is the obvious one,

o she uses 2 consecutive memory locations to represent the X and Y

coordinates

 In a language like C, this information “leaks” very easily

o Partly because it is not strongly typed

o OCaml prevents this (hard to make a good example in ML!)

 Ramin can take advantage of TA’s implementation to do “clever” things

o For example, suppose he has a bunch of points in an array and wants

to check if any lie on an axis (X or Y)

 Just multiply them all together, check for 0

o Or to determine quadrant, multiply locations and check the sign

 Without calling point_x or point_y

 This can be genuinely faster, in terms of execution time, and sometimes

this really matters

 But usually it leads to a disaster

o Premature emphasis on performance!

5

 TA changes her implementation, for example by using polar coordinates, or

switching X and Y

o Or adding a “magic number” to the beginning of each point, as a

primitive form of type checking

o After all, her default implementation of point is too weak

 any pair of numbers is a point!

 Why do this? For example, determining that a pair of points lie along a line

through the origin is trivial in polar coordinates, and perhaps TA wants to

add this to the spec since she can support it efficiently

 A bigger disaster can occur if the change TA makes is more subtle

 Suppose she keeps most points in (x,y) order, but some in (y,x)? Or suppose

that on some computers they are in (x,y) and some they are in (y,x)?

o “big-endian” vs “small-endian” hardware

 Ramin’s code might not break, but his users (or his users users) might

suddenly become flaky

 Tracking down this kind of bug is a total nightmare

6

 Examples: In Windows 3.0, a message was sent to a window if it was being

resized or moved that its size was potentially changing.

o In Windows 3.1, they fixed this so the message was only sent on

resizing, not on moving

o But the most popular application (Lotus 123) depended on getting

this message even on a move, so it broke

o See: “Make Compatible” on Wikipedia

 It is well-known within Microsoft that certain system calls would try to

figure out what program was calling them (by looking up the call stack) and

change their behavior to try to do what was expected

 Maintaining compatibility is hard is a huge, painful effort

 It’s no wonder that Intel and Microsoft are huge, and sometimes

lumbering, companies!

 Typically failures come from:

o Eagerness to get to work writing code

o Too early focus on performance

 There is no Moore’s law for programmers!

o Inexperience with writing code big enough to need specs

7

 Spec design itself is something of an art form

 Remove any un-needed details, only describe what the implementation is

required to do

o What it does versus how it does it

o Leave implementor (TA) freedom to improve and innovate!

o Potentially might specify resources needed (time, space)

 This is a somewhat controversial point, but there are situations

where it is clearly needed

 Such as most data structures (consider finite maps)

 You want these to be designed by both sides

o Just like a good business contract

 You need a spec to decouple the user of (something) from the builder of

(something)

o User and builder agree on the spec

o User can freely assume the implementation meets the spec

o Builder can implement the spec as they see fit!

 Good examples of complex specs: standards

o 802.11b/bluetooth, HTML/XML, MP3/JPEG, TCP/IP

 Also: electricity, construction, drugs, DICOM, etc.

o Complex design process w/ competing commercial interests

o Reference implementation for debugging

 Implementation is not the spec!

o Huge issue for, e.g., Windows, HTML, Office, etc

o Retrofitting a spec is a huge pain

 For example, Office file formats switched to XML

