Today slide credits

• Best algorithms book:
 – Slides c/o Kevin Wayne
 • With slight changes
Two basic algorithms

• Exhaustive search: try everything
 – Always works. Always slow.
• Greedy method: act locally
 – Sometimes works. Always fast.
• Today: a triumph of greed
 – Plus a nice induction proof
• First: pirate grammar
Pirate grammar

• What is a pirate’s favorite sentence?

“Barkeep!”

“More”

“of your best”

“Yer a”

“of the same”

“wimpy”

“scurvy”

“grog!”

“grub.”

“chicken.”
Problem: shortest paths

• Underlying problem for examples
 – Not completely obvious
 • Pirate favorite sentence?
 • Photoshopping images??

• General version: given a graph with edge weights, a starting node s and a target t, find shortest path from s to t

• Claim: this problem is impossible
 – Proof?
Cycles

• Consider a cycle A-B-C-A
 – Where the weight sum is negative
• Go around this multiple times
 – Always makes an even shorter path!
• Does the presence of a negative weight cycle imply no shortest path?
 – Almost, but not quite
• Let’s assume positive edge weights
 – Can detect negative cycles
Key property

• Suppose the shortest path from s to t goes via v
 – I.e., $s \ldots v \ldots t$
 – Otherwise, we would take that “shortcut” instead, and create an even shorter path
 – Parse this statement carefully!

• When considering s-v-t paths, we only need the shortest s-v path
 – Don’t need to try everything!
Idea: Dijkstra (1959)

Can think of expanding a ball
– Actually a variant of BFS!

Figure 4.7 A snapshot of the execution of Dijkstra’s Algorithm. The next node that will be added to the set S is x, due to the path through u.

Set S: nodes already explored
Shortest path example

Cost of path $s-2-3-5-t$
$= 9 + 23 + 2 + 16$
$= 48.$
Dijkstra’s algorithm

• On each recursive call we will have an explored set S
 – For each node u in S we hold the shortest path from s to u, write this as d(u)
 • Both the distance and the actual path
 • Easiest to just think about the distance d(u)
 – Can easily extend this to add path
 – Add an unexplored node v to S
 • But, which one to choose?
 • Adjacent to S, so we add just one edge
Choice of edge for a node

- The new node v can be adjacent to several nodes in S
 - v is at the “fringe” of the set S
 - If we choose to add v, we need to pick the right node in S to connect it to
Choice of node

• If we pick \(v \) to add to \(S \), we will connect it to the \(u \) in \(S \) that minimizes \(d(u) + \) the length of the \((u,v)\) edge
 – Call this shortest path length \(\pi(v) \)
 – But can we pick an arbitrary \(v \) to add?
• Can prove that this would break our invariant about \(S \! \)
• Need to pick \(v \) with smallest \(\pi(v) \), then add it to \(S \) with \(d(v) = \pi(v) \)
Algorithm

- Start with $S=\{s\}$, all other nodes in Q
 - $d(s) = 0$, else $d(v) = \infty$ (i.e. upper bound)
- Pick v on fringe of S that minimizes $\pi(v)$
 - I.e., a v in Q with a neighbor in S
- On recursive call, we will have
 - $d(v) = \pi(v)$
 - v is in S, and no longer in Q
- Done when we pick target t
 - Computes more than shortest s-t path!
Dijkstra's Shortest Path Algorithm

Find shortest path from s to t.
Blue arrows are shortest path to a node within S.
Green arrows are how we would add for each vertex.
Dijkstra’s Shortest Path Algorithm

\[S = \{ s \} \]
\[Q = \{ 2, 3, 4, 5, 6, 7, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s \} \]
\[Q = \{ 2, 3, 4, 5, 6, 7, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s \} \]
\[Q = \{ 2, 3, 4, 5, 6, 7, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2 \} \]
\[Q = \{ 3, 4, 5, 6, 7, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2 \} \]
\[Q = \{ 3, 4, 5, 6, 7, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2 \} \]
\[Q = \{ 3, 4, 5, 6, 7, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 6 \} \]
\[Q = \{ 3, 4, 5, 7, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 6 \} \]
\[Q = \{ 3, 4, 5, 7, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 6, 7 \} \]
\[Q = \{ 3, 4, 5, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 6, 7 \} \]
\[Q = \{ 3, 4, 5, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 6, 7 \} \]
\[Q = \{ 4, 5, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 6, 7 \} \]
\[Q = \{ 4, 5, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 5, 6, 7 \} \]
\[Q = \{ 4, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 5, 6, 7 \} \]
\[Q = \{ 4, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 4, 5, 6, 7 \} \]
\[Q = \{ t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 4, 5, 6, 7 \} \]
\[Q = \{ t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 4, 5, 6, 7, t \} \]
\[Q = \{ \} \]
Dijkstra’s Shortest Path Algorithm

$S = \{ s, 2, 3, 4, 5, 6, 7, t \}$

$Q = \{ \}$

Note: we’ve built a tree that “spans” the graph!
Correctness proof (sketch)

• Induction on the size of the graph
• \(P[n] = "\text{algorithm works for all graphs with } n \text{ nodes}" \)

Figure 4.8 The shortest path \(P_v \) and an alternate \(s-v \) path \(P \) through the node \(y \).
Applications and extensions

• Pirate’s favorite sentence?
 – Is there a challenge in just using the probabilities as edge lengths?
 – How do we solve it, legitimately?

• All-pairs shortest paths
 – Easy solution: run from each source!
 – In practice, this is often best
 • But there are better asymptotic solutions