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• Best algorithms book:

– Slides c/o Kevin Wayne

• With slight changes
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Two basic algorithms

• Exhaustive search: try everything

– Always works. Always slow.

• Greedy method: act locally

– Sometimes works. Always fast.

• Today: a triumph of greed

– Plus a nice induction proof

• First: pirate grammar



Pirate grammar

• What is a pirate’s favorite sentence?

“Barkeep!” “More”

“Yer a”

“of your 

best”

“of the 

same”

“scurvy”

“grog!”

“grub.”

“chicken.”

“wimpy”
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Problem: shortest paths

• Underlying problem for examples

– Not completely obvious

• Pirate favorite sentence?

• Photoshopping images??

• General version: given a graph with 

edge weights, a starting node s and a 

target t, find shortest path from s to t

• Claim: this problem is impossible

– Proof?



Cycles

• Consider a cycle A-B-C-A

– Where the weight sum is negative

• Go around this multiple times

– Always makes an even shorter path!

• Does the presence of a negative 

weight cycle imply no shortest path?

– Almost, but not quite

• Let’s assume positive edge weights

– Can detect negative cycles



Key property

• Suppose the shortest path from s to t 

goes via v

– I.e., s … v … t

– Otherwise, we would take that “shortcut” 

instead, and create an even shorter path

– Parse this statement carefully!

• When considering s-v-t paths, we only 

need the shortest s-v path

– Don’t need to try everything!

shortest s-v path 



Idea: Dijkstra (1959)

• Can think of expanding a ball

– Actually a variant of BFS!



Shortest path example

Cost of path s-2-3-5-t
=  9 + 23 + 2 + 16
= 48.
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Dijkstra’s algorithm

• On each recursive call we will have an 

explored set S

– For each node u in S we hold the shortest

path from s to u, write this as d(u)

• Both the distance and the actual path

• Easiest to just think about the distance d(u)

– Can easily extend this to add path

– Add an unexplored node v to S

• But, which one to choose?

• Adjacent to S, so we add just one edge



Choice of edge for a node

• The new node v can be adjacent to 

several nodes in S

– v is at the “fringe” of the set S

– If we choose to add v, we need to pick 

the right node in S to connect it to

s

v

u1

d(u1)

S

1

u2
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d(u2)

d(u1) + 1

versus
d(u2) + 2



Choice of node

• If we pick v to add to S, we will 

connect it to the u in S that minimizes 

d(u) + the length of the (u,v) edge

– Call this shortest path length (v)

– But can we pick an arbitrary v to add?

• Can prove that this would break our 

invariant about S!

• Need to pick v with smallest (v), then 

add it to S with d(v) = (v)



Algorithm

• Start with S={s}, all other nodes in Q

– d(s) = 0, else d(v) =  (i.e. upper bound)

• Pick v on fringe of S that minimizes (v)

– I.e., a v in Q with a neighbor in S

• On recursive call, we will have

– d(v) = (v)

– v is in S, and no longer in Q

• Done when we pick target t

– Computes more than shortest s-t path!
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Dijkstra's Shortest Path Algorithm

Find shortest path from s to t.

Blue arrows are shortest path to a node within S.

Green arrows are how we would add for each vertex.
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S = { s }

Q = { 2, 3, 4, 5, 6, 7, t }
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Dijkstra's Shortest Path Algorithm
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32Note: we’ve built a tree that “spans” the graph!



Correctness proof (sketch)

• Induction on the size of the graph

• P[n] = “algorithm works for all graphs 

with n nodes”

32



Applications and extensions

• Pirate’s favorite sentence?

– Is there a challenge in just using the 

probabilities as edge lengths?

– How do we solve it, legitimately?

• All-pairs shortest paths

– Easy solution: run from each source!

– In practice, this is often best

• But there are better asymptotic solutionsi


