Today slide credits

- Best algorithms book:
- Slides c/o Kevin Wayne
- With slight changes

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Two basic algorithms

- Exhaustive search: try everything - Always works. Always slow.
- Greedy method: act locally
- Sometimes works. Always fast.
- Today: a triumph of greed - Plus a nice induction proof
- First: pirate grammar

Pirate grammar

- What is a pirate's favorite sentence?

Problem: shortest paths

- Underlying problem for examples
- Not completely obvious
- Pirate favorite sentence?
- Photoshopping images??
- General version: given a graph with edge weights, a starting node s and a target \dagger, find shortest path from s to \dagger
- Claim: this problem is impossible - Proof?

Cycles

- Consider a cycle A-B-C-A
- Where the weight sum is negative
- Go around this multiple times
- Always makes an even shorter path!
- Does the presence of a negative weight cycle imply no shortest path?
- Almost, but not quite
- Let's assume positive edge weights
- Can detect negative cycles

Key property

- Suppose the shortest path from s to \dagger goes via v

$$
\text { - I.e., s ...v ... } \dagger
$$

- Otherwise, we would take that "shortcut" instead, and create an even shorter path - Parse this statement carefully!
- When considering s-v- \dagger paths, we only need the shortest s-v path
- Don't need to try everything!

Idea: Dijkstra (1959)

Figure 4.7 A snapshot of the execution of Dijkstra's Algorithm. The next node that will be added to the set S is x, due to the path through u.

- Can think of expanding a ball - Actually a variant of BFS!

Shortest path example

Cost of path s-2-3-5-t
$=9+23+2+16$
$=48$.

Dijkstra's algorithm

- On each recursive call we will have an explored set S
- For each node u in S we hold the shortest path from s to u, write this as $d(u)$
- Both the distance and the actual path
- Easiest to just think about the distance d(u)
- Can easily extend this to add path
- Add an unexplored node v to S
- But, which one to choose?
- Adjacent to S, so we add just one edge

Choice of edge for a node

- The new node v can be adjacent to several nodes in S
$-v$ is at the "fringe" of the set S
- If we choose to add v, we need to pick the right node in S to connect it to

$$
\begin{gathered}
d(u 1)+\ell_{1} \\
\text { versus } \\
d(u 2)+\ell_{2}
\end{gathered}
$$

Choice of node

- If we pick v to add to S, we will connect it to the u in S that minimizes $d(u)+$ the length of the (u, v) edge - Call this shortest path length $\pi(v)$ - But can we pick an arbitrary v to add?
- Can prove that this would break our invariant about S!
- Need to pick \vee with smallest $\pi(v)$, then add it to S with $d(v)=\pi(v)$

Algorithm

- Start with $S=\{s\}$, all other nodes in Q $-d(s)=0$, else $d(v)=\infty$ (i.e. upper bound)
- Pick v on fringe of S that minimizes $\pi(v)$ - l.e., a v in Q with a neighbor in S
- On recursive call, we will have
$-d(v)=\pi(v)$
$-v$ is in S, and no longer in Q
- Done when we pick target \dagger
- Computes more than shortest s- \dagger path!

Dijkstra's Shortest Path Algorithm

Find shortest path from s to t. Blue arrows are shortest path to a node within S. Green arrows are how we would add for each vertex.

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s\} \\
& Q=\{2,3,4,5,6,7, \dagger\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s\} \\
& Q=\{2,3,4,5,6,7, \dagger\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s\} \\
& Q=\{2,3,4,5,6,7, \dagger\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2\} \\
& Q=\{3,4,5,6,7, \dagger\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2\} \\
& Q=\{3,4,5,6,7, \dagger\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2\} \\
& Q=\{3,4,5,6,7, \dagger\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2,6\} \\
& Q=\{3,4,5,7, \dagger\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2,6\} \\
& Q=\{3,4,5,7, \dagger\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2,6,7\} \\
& Q=\{3,4,5, \dagger\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2,6,7\} \\
& Q=\{3,4,5, \dagger\}
\end{aligned}
$$

\min

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2,3,6,7\} \\
& Q=\{4,5, \dagger\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2,3,6,7\} \\
& Q=\{4,5, \dagger\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2,3,5,6,7\} \\
& Q=\{4, \dagger\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2,3,5,6,7\} \\
& Q=\{4, \dagger\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2,3,4,5,6,7\} \\
& Q=\{t\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2,3,4,5,6,7\} \\
& Q=\{t\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2,3,4,5,6,7, \dagger\} \\
& Q=\{ \}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2,3,4,5,6,7, \dagger\} \\
& Q=\{ \}
\end{aligned}
$$

Note: we've built a tree that "spans" the graph!

Correctness proof (sketch)

- Induction on the size of the graph
- $P[n]=$ "algorithm works for all graphs with n nodes"

Figure 4.8 The shortest path P_{v} and an alternate s-v path P through the node y.

Applications and extensions

- Pirate's favorite sentence?
- Is there a challenge in just using the probabilities as edge lengths?
- How do we solve it, legitimately?
- All-pairs shortest paths
- Easy solution: run from each source!
- In practice, this is often best
- But there are better asymptotic solutionsi

