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Announcements: 

 PS2 due Thursday 9/22 11:59PM 

 Quiz #2 Thursday 9/22, first ten minutes 

o Coverage through today’s lecture 
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 Inductive correctness proofs 

 

 Code correctness approaches: 

o Hey, it worked on my example! 

 More or less the state of the art 

 MS has very large test suites, lots of automatic tools 

 Lots of run-time failure checks, i.e. assert 

 

o Convince your partner (“pair programming”) 

 

o Use a model of how the code works! 

 

 We will use the term verification to refer to a process that generates high 

assurance that code works on all inputs and in all environments.  

 

 Testing is a good, cost-effective way of getting assurance 

o but not a verification process in this sense  

o there is no guarantee that the coverage of the tests is sufficient for 

all uses of the code 

o Obscure paths through code can be catastrophic 

 

 Verification generates a proof that all inputs will result in outputs that 

conform to the specification.  

o Sometimes only implicit proof 

o Relative to the spec, but specs are easier to debug than code! 

 

 In this lecture, we look at verification based on explicitly but informally 

proving correctness of the code.  
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 Verification tends to be expensive and to require thinking carefully about 

and deeply understanding the code to be verified.  

o In practice, it tends to be applied to code that is important and 

relatively short.  

o Verification is particularly valuable for critical systems where testing 

is less effective.  

o Critical systems are quite interesting (space shuttle destruct switch is 

a nice example) 

 

 Many programs are concurrent (you will write some later this semester).  

o Because their execution is not deterministic, concurrent programs 

are hard to test  

o Sometimes subtle bugs can only be found by attempting to verify the 

code formally.  

 

 In fact, tools to help prove programs correct have been getting increasingly 

effective and some large systems have been fully verified,  

o including compilers, processors and processor emulators, and key 

pieces of operating systems.  

 

 Another benefit to studying verification is that when you understand what 

it takes to prove code correct, it will help you reason about your own code 

(or others')  

o Will write code that is correct more often, based on specs that are 

more precise and useful.  
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 Outline of a proof of program correctness,  

o To guest star in P1 and final exam 

 Key tools: 

o Induction 

o Substitution model 

 

 Recall our induction recipe 

o Statement to be proved: sum_i=1^n = n(n+1)/2 

o Variable: n 

o Proof of base case, here P[1] 

o Prove P[n] implies P[n+1] for any n 

 Pick an arbitrary n, assume P[n] (I.H.), show P[n+1] 

 Think of dominos labeled “P[1]”, “P[2]”, etc. knocking each other over 

 

 Now suppose we want to prove something simple like our factorial 

program is correct 

o More complex example coming shortly, maybe in section 

let rec fact(n) =  
  if n = 1 then 1 else n*fact(n-1) 

 What is our statement? 
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Example : proof of an inductive sort 

We want to prove the correctness of the following insertion sort algorithm. The sorting uses a 

function insert that inserts one element into a sorted list, and a helper function isort' that 

merges an unsorted list  into a sorted one, by inserting one element at a time into the sorted part. 

Functions insert and isort' are both recursive. 

let rec insert(e, l): int list = 
  match l with 
     [] -> [e] 
  | x::xs -> if e < x then e::l else 
x::(insert(e,xs)) 
 
let rec isort' (l1, l2): int list = 
  match l1 with 
     [] -> l2 
  | x::xs -> isort'(xs, insert(x, l2)) 
 
let isort(l: int list): int list = 
  isort'(l, []) 
 

 

We will prove that isort works correctly for lists of arbitrary size. The proof consists of three steps: 

first prove that insert is correct, then  prove that isort' is correct, and finally prove that isort is 

correct.  Each step relies on the result from the previous step. The first two steps require proofs by 

induction (because the functions in question are recursive). The last step is straightforward. 
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Correctness proof for insert 

We want to prove that for any element e and any list l: 1) the resulting list  insert(e, l) is sorted; 

and 2) that the resulting list insert(e,l) contains all of the elements of l, plus element e. 

The notion that a list l is sorted, written sorted(l), is defined as usual:  sorted(l) is true if l has at 

most one element; and sorted(x::xs) holds if x <= e for all elements e being members of xs, and 

sorted(xs) holds.  

The proof is by induction on length of list l. The proof follows the usual format of a proof by 

induction, i.e., specifying what property we want to prove, what we are inducting on, showing 

the base case, the inductive step, and clearly specifying when we apply the induction hypothesis 

(carefully indicating why we can apply it, and showing the lists to which it is applied! ). 

 Property to prove:  
P(n) = for any list l and element e: 
           if        sorted(l) and  
                     length(l) = n  
           then   sorted(insert(e,l)) and 
                     elements(insert(e,l)) = elements(l) U {e} 
 
We want to prove that P(n)  holds for all n >= 0. 
 
Note: elements(l) represents the multiset containing the elements of l. A multiset is a set where 
duplicates are allowed in the set. Think of a set where each element is annotated with the 
number of occurences (>= 1). 
The union operation will increase the cardinality of elements in both sets, e.g., {1,2} U {1} = 
{1,1,2}. 
  

 Base case: n = 0. We want to prove that P(0) holds.  Let a list l such that sorted(l) and length(l) = 
0.  
The only list with length zero is nil,  so l= nil. Therefore, insert(e,l) evaluates as follows: 
 
insert(e, [])  

 

-> (evaluation of function application) 
match [] with  
  [] -> [e] 

| x::xs -> ...  

 

-> (pattern matching) 

[e] 

 
List [e] has one element, so it is sorted by definition. Hence, insert(e, []) is sorted. Furthermore, 
elements(insert(e, [])) = elements([e]) = {e} = {e} U Â =  {e} U elements([]). Therefore, the base 
case holds. 
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 Inductive step. Assume that P(n) holds. That is, for any element e and any sorted list of length n, 
insert(e,l) is sorted and contains all of the elements of l, plus e.  This is the induction hypothesis 
IH. 
 
We want to prove that P(n+1) also holds. That is, we want to prove that for any e, and any 
sorted l of length n+1, insert(e,l) is also sorted and contains all elements of l, plus e. 
 
Let e be an arbitrary element, and l a sorted list of length n+1.  Therefore, l=h::t, where h is less 
than all elements in t and  t is a sorted list of length n. Also, elements(l) = elements{t} U {h} 
 
Thanks to the evaluation model by substitution, we have a formal way of describing the 
execution of insert. According to that model, the evaluation of insert(e,l) proceeds as follows: 
 
insert(e, l)  

 

-> (function evaluation and replacing l with h::t) 
match h::t with  
  [] -> [e] 

| x::xs -> if e < x then n::l else x::(insert(e,xs))  
 

-> (pattern matching) 

if e < h then e::l else h::(insert(e,t))  
 
Now we have two possible results depending on the value of the expression "e < h". 
 
Case 1: If e < h is true, then insert(e,l) = e::l. We have the following: (a) Since h is less than all 
elements in t,  
and e < h, it means that e is less than all elements in h::t = l. (b) We also know that l is sorted. 
Together, (a) and (b) imply that e::l is sorted. Therefore, insert(e,l) is sorted.  
 
Also, elements(insert(e,l)) = elements(e::l) = elements(l) U {e}. So P(n+1) holds in this case. 
 
Case 2. If h <=e, then insert(e,l) = h::(insert(e,t)).  Let l' = insert(e,t). 
 
Because t is a sorted list of length n, it means that we can apply the induction hypothesis. By 
the IH for element e and list t, the list l'= insert(e,t) is sorted, and elements(l') = elements(t) U 
{e}. 
 
Since h::t is sorted, h is less than any element in elements(t). Also, h <= e. Therefore h is less 
than all elements in l'. Along with the fact that l' is sorted, this means that insert(e,l) = h::l' is 
sorted. 
 
Finally, elements(insert(e,l)) = elements(h::insert(e,t)) =  elements(h::l') =  {h} U elements(l') =  
{h} U {e} U elements(t) = {e} U {h} U elements(t) = {e} U elements(l). Therefore, P(n+1) holds in 
this case. 
 
Since the conclusion of P(n+1) holds for all branches of evaluation, we have proved the inductive 
step. 
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We can therefore conclude that P(n) holds for all n >= 0. 
  

 

Proving correctness of isort' 

let isort' (l1: int list, l2:int list) = 
  match l1 with 
    [] -> l2 
  | x::xs -> isort'(xs, insert(x, l2)) 
 

We will now prove by induction on the length of l1 that isort' works correctly, following the 

same proof format. 

 Property to prove. We will prove the following property: 
 
P(n) = for any lists l1 and l2: 
           if       l1 has length n and  
                    l2 is sorted 
           then: 
                    isort'(l1, l2) is sorted and  
                    elements(isort'(l1, l2)) = elements(l1) U elements(l2). 
 
We prove that P(n) holds for all n >=0  by induction on n (the length of the first list). 
  

 Base case: n = 0. Let l1 and l2 such that length(l1) = 0 and l2 is sorted. This means that l1 = nil. 
According to the substitution model, the evaluation of isort' works as follows: 
 
isort' ([], l2)  

 

-> (evaluation of function application) 
match [] with 
  [] -> l2 

| x::xs -> isort'(xs, insert(x, l2))  

 

-> (pattern matching) 

l2 
 
The list l2 is a sorted list by assumption, and also contains all  the elements of l2 and [], since the 
latter is the empty set.  Therefore P(0) holds, and we have proven the base case. 
  

 Induction step. Assume that P(n) holds. That is, for any l1, l2, such that  length(l1) = n and 
sorted(l2), we have isort'(l1, l2) = l, where l is sorted and contains all the elements of l1 and l2. 
 
We now want to prove that P(n+1) holds. Let l1 and l2 be two lists  such that length(l1) = n+1 
and sorted(l2). Hence, l1 = h::t, where t is a list of length n. The evaluation of isort'(l1,l2) 
proceeds as follows: 
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isort'(l1, l2)  

 

-> (evaluation and replacing l1 with h::t) 
match h::t with 
  [] -> l2 

| x::xs -> isort'(xs, insert(x, l2))  

 

-> (pattern matching) 

isort'(t, insert(h, l2))  
 
Let l' = insert(h,l2). We know that l2 is sorted. Hence, from the correctness proof for insert, we 
know that l' is sorted, and elements(l') = elements(l2) U {h}. 
 
We know that length(t) = n. We also know that t and l' are sorted. Therefore, we can apply the 
induction hypothesis (IH). By applying IH to lists t and l', we get that isort'(t,l') is sorted, and 
elements(isort'(t,l')) = elements(t) U elements(l').  
 
But elements(l') = elements(l2) U {h}, so elements(isort'(t,l')) =  elements(t) U elements(l2) U {h} 
= elements(l1) U elements(l2). Hence the resulting list l'' = isort'(t,l') is sorted and contains  all 
elements of l1 and l2. This shows that P(n+1) holds. 
 
We conclude that P(n) holds for all n >= 0. 
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Proving the correctness of isort 

It is now straightforward to prove that isort works correctly. We want to show that for any list l, 

isort(l) is sorted and  

elements(isort(l)) = elements(l). 

 

The evaluation of isort(l) is: 

 
isort(l)  

 

(by substitution) 

-> isort'(l, []) 

 

Let l' be the result of evaluating isort'(l, []). From the correctness proof for isort', we know that l' 

is sorted and elements(l') = elements(l) U elements([]) = elements(l) U Â = elements(l). Hence 

the final result is sorted and contains all elements of l, Q.E.D.. 
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Modular verification 

In our proof that insert met its spec, we assumed that the implementation of > met its spec. This 

was good because we didn't have to look at the code of >. This was an example of modular 

verification, in which we were able to verify one small unit of code at a time. Function 

specifications, abstraction functions, and rep invariants make it possible to verify modules one 

function at a time, without looking at the code of other functions. If modules have no cyclic 

dependencies, which OCaml enforces, then the proof of each module can be constructed 

assuming that every other module satisfies the specs in its interface. The proof of the entire 

software system is then built from the bottom up.  

 


