Announcements:

e PS1due Today 11:59PM
o Solutions in class tomorrow
o HW back in section Monday
e Quiz #1 on Thursday, first 10 minutes of class
o Coverage includes today’s material but not tomorrow’s
o Also returned Monday
e RDZ office hours: Tuesday after class, but today 4-5, in 4158 Upson
o Best problem set resource: course staff
o Best course/exam resource: Yours Truly

e Need to write the simplest solution to a problem
Important in real life
o Code that works is simply not good enough
o “Programs are designed primarily to be read by other humans”
e Importantin CS3110
o Full credit reserved for really the right answer

e Examples:

let rec fact(z) =
ifz=1
then 1
else if z = 2
then 2
else
z*fact(z-1)

let rec inclist (lst: int 1list) =

match Ist
with

| [0 -> []

| [h] -> [h+1]

| h::t -> h+1l::inclist(t)

e For CS3110 this is a particularly important lesson because we are going to
PROVE code is correct
o Recall thatin ML, as opposed to imperative languages, a program
“feels” much more like a mathematical definition

http://en.wikipedia.org/wiki/International Obfuscated C Code Contest

#define -F<00| | --F-00--;

int F=00,00=00;main () {F 00 () ;printf("%1.3f\n",4.*-F/00/00);}F 00 ()

http://en.wikipedia.org/wiki/International_Obfuscated_C_Code_Contest

The main tool used for proofs in CS is mathematical induction
Today we will do it, briefly, for mathematical formulae
We will use it for programs in a week or so

Induction recipe (one of the very few things you should memorize in
CS3110):
o Example: 1+2+..n = n(n+1)/2
o 1. Statement to be proven
= For any natural number n, the sum from 1 to nis n(n+1)/2
o 2. Variable we are doing induction on: n
= Easy in this case, not always so trivial
o Call this P[n]. Note that it is a sentence about the integer n
= Not an Ocaml function!

O

3. Prove base case, typically P[1] or P[O]

o 4. Prove that (for any n) (P[n] => P[n+1])

= Pick an n, assume P[n] is true (I.H.), prove P[n+1] follows
= Not the same as prove that (for any n)P[n] => P[n+1]

Currying and higher order functions
Suppose we want to compute x + sqrt(y)

Tet try(x,y) = x +. sqrt(y)

o This is short for
let try z = match z with (x,y) -> x +. sqrt(y)

o Type is (float * float) -> float
Alternate form, “Currying”, named after logician (not food!)
Type will be float->float->float
o What the heck is this?
o Compare float->float, like sqrt
= Function that takes a float, returns a float
= Let’s call this a “floatfun”, just to give it a name (slang)
o Such things are FIRST CLASS OBJECTS
o Higher order procedures!
Now we are talking about a function that returns a floatfun given a float

o How to build such a thing in OCaml?
Tet tryc x y = x +. sqrt(y)
This is syntactic sugar for
Tet tryc = fun(x) -> fun(y) -> x +. sqrt(y)
o Which is harder to read

What is the advantage? Let’s get back to this in a second.

e Simpler example:
lTet plus xX y = X +y
or with all the types written explicitly:
Tet plus (x : int) (y : int) : int = x + vy

Notice that there is no comma between the parameters. Similarly, when applying a curried
function, we write no comma:

plus 2 3 =2+ 3 =5

The curried declaration above is syntactic sugar for the creation of a higher-order function. It
stands for:

Tet plus = fun (x : int) -> fun (y : int) -> x + vy

Evaluation of p1us 2 3 proceeds as follows:

Tus 2 3

((fun (x @ int) -> fun (y : int) -> x +vy) 2) 3
(fun (y : int) -> 2 +vy) 3

2 + 3

5

nmmnnins

So p1us is really a function that takes in an int as an argument, and returns a new function of
type int -> int. Therefore, the type of p1us iS int -> (int -> int).We can write this
simply as int -> int -> int because the type operator -> is right-associative.

It turns out that we can view binary operators like + as functions, and they are curried just like
plus:

+)5;
: int -> int -> int

#

- <fun>
(+) 2 3;;

#

int = 5
let next = (+) 1;;
val next : int -> int = <fun>
next 7;;
- :1int = §;

e So, how does this help us?
e plus 2 adds 2 to its arg, but without recomputing 2 (so what?)
e How about plus (slowfun 2)?

