Announcements:

- PS1 due Today 11:59PM
 - Solutions in class tomorrow
 - HW back in section Monday
- Quiz #1 on Thursday, first 10 minutes of class
 - Coverage includes today’s material but not tomorrow’s
 - Also returned Monday
- RDZ office hours: Tuesday after class, but today 4-5, in 4158 Upson
 - Best problem set resource: course staff
 - Best course/exam resource: Yours Truly
• Need to write the simplest solution to a problem
 Important in real life
 o Code that works is simply not good enough
 o “Programs are designed primarily to be read by other humans”
• Important in CS3110
 o Full credit reserved for really the right answer

• Examples:

```ml
let rec fact(z) =
  if z = 1
  then 1
  else if z = 2
  then 2
  else
    z*fact(z-1)

let rec inclist (lst: int list) =
  match lst
  with
  | [] -> []
  | [h] -> [h+1]
  | h::t -> h+1::inclist(t)
```

• For CS3110 this is a particularly important lesson because we are going to
 PROVE code is correct
 o Recall that in ML, as opposed to imperative languages, a program
 “feels” much more like a mathematical definition
#define _F<00|--F-00-->
int F=00,OO=00;main(){F,OO();printf("%1.3f\n",4.*F/00/00);}F,OO()}

{

_____--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

• The main tool used for proofs in CS is mathematical induction
• Today we will do it, briefly, for mathematical formulae
• We will use it for programs in a week or so

• Induction recipe (one of the very few things you should memorize in CS3110):
 o Example: 1+2+...n = n(n+1)/2
 o 1. Statement to be proven
 ▪ For any natural number n, the sum from 1 to n is n(n+1)/2
 o 2. Variable we are doing induction on: n
 ▪ Easy in this case, not always so trivial
 o Call this P[n]. Note that it is a sentence about the integer n
 ▪ Not an Ocaml function!
 o 3. Prove base case, typically P[1] or P[0]
 o 4. Prove that (for any n) (P[n] => P[n+1])
 ▪ Pick an n, assume P[n] is true (I.H.), prove P[n+1] follows
 ▪ Not the same as prove that (for any n)P[n] => P[n+1]
Currying and higher order functions

Suppose we want to compute \(x + \sqrt{y} \)

```ocaml
let try(x,y) = x +. sqrt(y)
```

- This is short for

```ocaml
let try z = match z with (x,y) -> x +. sqrt(y)
```

- Type is \((\text{float} \times \text{float}) \to \text{float}\)

Alternate form, “Currying”, named after logician (not food!)

Type will be \(\text{float} \to \text{float} \to \text{float}\)

- What the heck is this?
- Compare \(\text{float} \to \text{float}\), like \(\text{sqrt}\)
 - Function that takes a float, returns a float
 - Let’s call this a “floatfun”, just to give it a name (slang)
- Such things are FIRST CLASS OBJECTS
- Higher order procedures!

Now we are talking about a function that **returns** a floatfun given a float

- How to build such a thing in OCaml?
  ```ocaml
  let tryc x y = x +. sqrt(y)
  ```

- This is syntactic sugar for
  ```ocaml
  let tryc = fun(x) -> fun(y) -> x +. sqrt(y)
  ```

- Which is harder to read

What is the advantage? Let’s get back to this in a second.
• Simpler example:

\[
\text{let plus } x \ y = x + y
\]

or with all the types written explicitly:

\[
\text{let plus } (x : \text{int}) (y : \text{int}) : \text{int} = x + y
\]

Notice that there is no comma between the parameters. Similarly, when applying a curried function, we write no comma:

\[
\text{plus } 2 \ 3 = 2 + 3 = 5
\]

The curried declaration above is syntactic sugar for the creation of a \textbf{higher-order function}. It stands for:

\[
\text{let plus} = \text{fun } (x : \text{int}) \to \text{fun } (y : \text{int}) \to x + y
\]

Evaluation of \texttt{plus 2 3} proceeds as follows:

\[
\begin{align*}
\text{plus } 2 \ 3 \\
= ((\text{fun } (x : \text{int}) \to \text{fun } (y : \text{int}) \to x + y) \ 2) \ 3 \\
= (\text{fun } (y : \text{int}) \to 2 + y) \ 3 \\
= 2 + 3 \\
= 5
\end{align*}
\]

So \texttt{plus} is really a function that takes in an \texttt{int} as an argument, and returns a new function of type \texttt{int} \to \texttt{int}. Therefore, the type of \texttt{plus} is \texttt{int} \to (\texttt{int} \to \texttt{int}). We can write this simply as \texttt{int} \to \texttt{int} \to \texttt{int} because the type operator \to is right-associative.

It turns out that we can view binary operators like + as functions, and they are curried just like \texttt{plus}:

\[
\begin{align*}
\# (\texttt{+});; \\
- : \texttt{int} \to \texttt{int} \to \texttt{int} = \langle \text{fun} \rangle \\
\# (\texttt{+}) 2 \ 3;; \\
- : \texttt{int} = 5 \\
\# \text{let next} = (\texttt{+}) 1;; \\
\text{val next} : \texttt{int} \to \texttt{int} = \langle \text{fun} \rangle \\
\# \text{next} 7;; \\
- : \texttt{int} = 8;
\end{align*}
\]
• So, how does this help us?
• plus 2 adds 2 to its arg, but without recomputing 2 (so what?)
• How about plus (slowfun 2)?