
1

Announcements:

 Everyone should now have a section

 OCaml demo sessions Friday, time and place TBA

 PS1 due Tuesday 11:59PM

 Quiz #1 on Thursday, first 10 minutes of class

 Square example and substitution

o let square = fun z -> z*z

 Anonymous functions

o Why should everything have a name?

o Values don’t!

 In ML, functions are “first class objects”

o Don’t discriminate against them!

2

 Namespace management: scope, modules, etc.

 Lexical scope

o Very important to understand which variable an identifier refers to

o Source of many subtle bugs

o Common prelim question

 Let binds variables to values with a scope

o let id = e1 in e2

o Evaluate e1. Replace id in e2 by this value. The result of evaluating

the new e2 is the value of the let expression.

 Almost no exceptions to the substitution (string example, e.g.)

o Nested lets have a “block structure”

 Example:

o (let x = 3 in x*2) + x

 Think of let as “make this substitution within this block”

 EQUATIONAL REASONING

 How to think about the top-level loop?

 Parallel binding via and

o let x = 3 and y = 7 in x+y
o let x = 3 and y = x+4 in x+y
o let x = 3 in let y = x+4 in x+y

 Can be dangerous, but sometimes very useful

3

 Defining functions

 Most important elements of the namespace

 Lots of subtleties

 Example: let f x = e1 in e2

o Scope of x is e1

o Scope of f is e2

o Good quiz question…

 Syntactic sugar for

o let f = fun x -> e1 in e2

 Useful to remember this equivalence

 There is another equivalent form we will get to soon: currying!

 Side note: can also use modules for namespace management

o String.length vs. open String followed by length

o Some modules are open by default, such as Pervasives

 Why not String??

 Also note: functions take exactly 1 argument

o let f(x,y) = x + y;

o let z = (1,2)

o f(z)

4

 Recursive function definitions

 Suppose we try to write factorial using let. [Try it]

 Doesn’t work. Why?

 We need instead to use let rec instead

 let rec fact z = if z = 0 then 1 else z*fact(z-1)
in fact 3

 Can be used for mutually recursive functions!
let rec even x = x = 0 || odd (x-1)
and odd x = not (x = 0 || not (even (x-1)))
in
 odd 3110

 This can be very powerful and easy to abuse

