

1

 Announcements:

 Section 3, 4 will meet in 211 Upson, MW at 11:15A or 7:30P

 PS1 due next Tuesday 9/6 11:59PM

o PS versioning system

 Office hours are up

 All problem sets returned in section on Monday

 Everyone should be in CMS now

 Quiz #1 on Thursday 9/8, first 10 minutes of class

 Main difference between function and imperative programming:

o Imperative programs: statements that do things

 Formally, C assignments have an LHS and RHS

o Functional programs: expressions have values

 A bit like RHS, but closer to math (equational reasoning)

 You can see this even in simple examples like computing the sum of

squares through n

See slides from lecture 1:

2

 What’s the difference? Lots of things

 Mental model for C involves doing things, one at a time

 ML (= SML/OCaml) is more like math: eternal truths

o Can always substitute equals for equals

o Example: cos2 + sin2 = 1

 You will hear me say many times that in ML, an expression has a value

 Instead of asking “what does this program print” we ask “what is the value

of this expression”

o Very different question, different way of thinking

3

 What is an expression? There is a simple definition

o Recursive (first of many!)

identifier x,f (aka variable, name) ex: frob, num
constant c ex: 0, “hello”, 3.14
binary operator b ex: +, *, +.
unary operator i ex: -, not

term e x | c | u e | e1 b e2
 | if e1 then e2 else e3
 | e0(e1,…, en)
 | let {rec} d in e
 | let {rec} d1 and d2 … and dn in e
declaration d x = e
 | f(x0,…,xn):t = e
type t int | bool | char | string
 | t1 * t2 … tn
 | t1 * t2 … tn -> t

 Important notes:

o tuple types: what is the type of (1,2)? (1.0, 2)?

o function types, plus terms in body

 Writing all the types down is a pain. So ML does type inference

 Example: type of let f(x,y) = (x = String.length(y))

 Different kinds of errors

o Lexical syntax error: 2.0$

o Grammatical syntax error: let 0 x

o Run-time error: 2/0

o Type error: 1 + “a”, 1 + 2.0

4

 Huge win of ML: catch errors early!

o Why is this so important?

o The finicky ML compiler is very much your friend

o Once it compiles it tends to run

 Functions are first-class objects (unlike, e.g. Java, C)

 They can be

o Bound to a variable

o Passed to a function as an argument

o Returned as the result of a function

 Related point: not everything needs a name. Consider 1 + (2*3) in any

random programming language. What’s the name of that 6?

o Having to give everything a name is a pain

 You can have anonymous functions via fun

o Lots of fun in this course…

 This is surprisingly useful!

let square x = x * x (* is the same as: *)
let square = fun x -> x * x (* anon function! *)

(* higher order functions and values *)

let twice f = fun x -> f (f x)

let twice f x = f (f x)

let fourth = twice square

let fourth = twice (fun x -> x * x)

5

(* binding *)

let z = 3 in z

let z = 3 in z*z

(* parallel binding *)

let z = z +1 and a = z in z*a

(* uncurried *)

let longEnough (str, len) = String.length str >= len

(* curried *)

let longEnough str len = String.length str >= len

6

(* let rec and embedded lets *)

let isPrime (n : int) : bool =
 (* Returns true if n has no divisors between m and sqrt(n)
inclusive. *)
 let rec noDivisors (m : int) : bool =
 m * m > n || (n mod m != 0 && noDivisors (m + 1))
 in
 n >= 2 && noDivisors 2

(* Computes the square root of x using Heron of Alexandria's
 * algorithm (circa 100 AD). We start with an initial (poor)
 * approximate answer that the square root is 1.0 and then
 * continue improving the guess until we're within delta of the
 * real answer. The improvement is achieved by averaging the
 * current guess with x/guess. The answer is accurate to within
 * delta = 0.0001. *)
let squareRoot (x : float) : float =
 (* numerical accuracy *)
 let delta = 0.0001
 in

 (* returns true iff the guess is good enough *)
 let goodEnough (guess : float) : bool =
 abs_float (guess *. guess -. x) < delta
 in

 (* return a better guess by averaging it with x/guess *)
 let improve (guess : float) : float =
 (guess +. x /. guess) /. 2.0
 in

 (* Return the square root of x, starting from an initial guess.
*)
 let rec tryGuess (guess : float) : float =
 if goodEnough guess then guess
 else tryGuess (improve guess)
 in

 (* start with a guess of 1.0 *)
 tryGuess 1.0

