Announcements:
Section 3, 4 will meet in 211 Upson, MW at 11:15A or 7:30P
PS1 due next Tuesday 9/6 11:59PM
o PSversioning system
Office hours are up
All problem sets returned in section on Monday
Everyone should be in CMS now

Quiz #1 on Thursday 9/8, first 10 minutes of class

Main difference between function and imperative programming:
o Imperative programs: statements that do things
= Formally, C assignments have an LHS and RHS
o Functional programs: expressions have values
= A bit like RHS, but closer to math (equational reasoning)
You can see this even in simple examples like computing the sum of
squares through n
See slides from lecture 1:

int sumsqg(int n) {
y = 0;
for (x = 1; x <= n; x++)
y += x*x;

}

return n;

}

let rec sumsgqg (n:int) :int =
i1f n=0 then 0
else n*n + sumsq(n-1)

What's the difference? Lots of things
Mental model for C involves doing things, one at a time
ML (= SML/OCaml) is more like math: eternal truths

o Can always substitute equals for equals

o Example: cos® +sin® =1

You will hear me say many times that in ML, an expression has a value
Instead of asking “what does this program print” we ask “what is the value
of this expression”

o Very different question, different way of thinking

e What is an expression? There is a simple definition
o Recursive (first of many!)

identifier x,f (aka variable, name) ex: frob, num

constant c ex: 0, “hello”, 3.14
binary operator b ex: +, *, +.
unary operator i ex: -, not

terme x | c | ue | el b e?2
| if el then e2 else e3
| eO(el,.., en)
| Tet {rec} d in e
| Tet {rec} dl and d2 .. and dn in e
declaration d x = e
| f(x0,..,xn):t = e
type t int | bool | char | string
| t1 * t2 .. tn
| t1 * t2 .. th -> t

Important notes:
o tuple types: what is the type of (1,2)? (1.0, 2)?
o function types, plus terms in body

Writing all the types down is a pain. So ML does type inference

Example: type of Tet f(x,y) = (x = String.length(y))

Different kinds of errors

o Lexical syntax error:2.0$%

o Grammatical syntax error: Tet 0 Xx
o Run-time error: 2/0

o Typeerror:1 + “a”, 1 + 2.0

Huge win of ML: catch errors early!
o Why is this so important?
o The finicky ML compiler is very much your friend
o Once it compiles it tends to run

Functions are first-class objects (unlike, e.g. Java, C)
They can be
o Bound to a variable
o Passed to a function as an argument
o Returned as the result of a function
Related point: not everything needs a name. Consider 1 + (2*3) in any
random programming language. What’s the name of that 6?
o Having to give everything a name is a pain
You can have anonymous functions via fun
o Lotsof fun in this course...
This is surprisingly useful!

let square x = x * x (* is the same as: *)
let square = fun x -> x * x (* anon function! *)

(* higher order functions and values *)
let twice f = fun x > f (f x)

Tet twice f x = f (f x)

lTet fourth = twice square

Tet fourth

twice (fun x -> X * x)

(* binding *)

let z 3 1in z

let z 3 in z*z

(* parallel binding *)

let z =z +1 and a = z in z*a

(* uncurried *)

lTet longEnough (str, len) = String.length str >= len
(* curried *)

Tet TongEnough str len = String.length str >= len

(* let rec and embedded Tets *)

Tet isPrime (n : int) : bool =
(* Returns true if n has no divisors between m and sqrt(n)
inclusive. *)
let rec nobDivisors (m : int) : bool =
m*m>n || (nmodm != 0 & noDivisors (m + 1))
in
n >= 2 && nobDivisors 2

(* Computes the square root of x using Heron of Alexandria's

* algorithm (circa 100 AD). We start with an initial (poor)
approximate answer that the square root is 1.0 and then
continue improving the guess until we're within delta of the
real answer. The improvement is achieved by averaging the
current guess with x/guess. The answer 1is accurate to within
* delta = 0.0001. *)
Tet squareRoot (x : float) : float =

(* numerical accuracy *)

Tet delta = 0.0001

in

(* returns true iff the guess is good enough *)

Tet goodEnough (guess : float) : bool =
abs_float (guess *. guess -. x) < delta

in

(* return a better guess by averaging it with x/guess *)
Tet improve (guess : float) : float =

(guess +. x /. guess) /. 2.0
in

(* Return the square root of x, starting from an initial guess.
7':)
Tet rec tryGuess (guess : float) : float =
if goodEnough guess then guess
else tryGuess (improve guess)
in

(* start with a guess of 1.0 *)
tryGuess 1.0

