
CS 3110 Lecture 1

Course Overview

Ramin Zabih

Cornell University CS

Fall 2011

www.cs.cornell.edu/courses/cs3110

Course staff

 Professor: Ramin Zabih

 Graduate TA’s: Joyce Chen, Alex Fix

 Undergraduate section TA’s:
 Ashir Amer, Gautam Kamath, Katie Meusling

 Possibly more to come

 Undergraduate course consultants:
 Lots! Complete list available shortly

 You have a large and veteran staff to

help you – make good use of them!

Course meetings

 Lectures Tuesdays and Thursdays

 Recitation sections Mondays and

Wednesdays, 11:15, 2:30 and 3:35
 A fourth section will be added shortly, at a time that

helps out the students (probably in the evening)

 Details in email, before Monday morning

 New material in lecture and section
 You are expected to attend both

 Class participation counts
 Please go to the same section

Course web site

 www.cs.cornell.edu/courses/cs3110
 Will be live later today

 Course material, homework, announcements, etc.

 Suggested readings will include a

complete set of course notes
 Nearest equivalent to a textbook

 But the lectures and sections are definitive

 Links to lecture notes live after lecture
 Sketchy, but most accurate summary

 Goal is to help, not replace attendance!

http://www.cs.cornell.edu/courses/cs3110

Course news group Piazza; CMS

 Piazza will be set up shortly
 This is an experiment,

 The old approach (news group) doesn’t scale up

 Assignments will be handed in via CMS
 Everything except exams and quizzes

 Grades for everything recorded on CMS

Coursework

 6 problem sets due Thursday 11:59PM
 Exception: PS1 (out today) is due Tuesday 9/6

 Electronic submission via CMS

 Four single-person assignments, then two

two-person assignments
 You’ll have 3 weeks for the big assignments

 There will be checkpoints

 Two prelims plus a final

 6 small in-lecture quizzes

Grading

 Roughly speaking we will follow the usual

CS3110 curve (centered around B/B+)

 Problem sets & exams count about the

same, quizzes & participation count a little
 I’m mostly interested in what you know at the end of

the class, especially as shown on the final exam

 I don’t drop an assignment or exam, but I

use your overall qualitative performance
 Look for a pattern of your overall performance

 But the bottom third of class isn’t likely to get an A

Late policy

 You can hand it in until we start grading
 After that, no credit

 Be sure to save whatever you currently

have done, and save frequently
 CMS is your friend

 Be certain you have submitted something, even if it

isn’t perfect and you are improving it

 If you have an emergency, talk to me. Alex

or Joyce before the last second

 Qualitative grading algorithm!

Academic integrity

 Strictly enforced, and easier to check than

you might think
 Automated tools, etc.

 Exams count a lot
 When exam scores differ from problem set scores, we

typically go with exam scores

 To avoid pressure, start early
 We try hard to encourage this

 Take advantage of the large veteran staff

What this course is about

 Programming isn’t hard

 Programming well is very hard
 Huge difference among programmers (10x or more)

 We want you to write code that is:
 Reliable, efficient, readable, testable, provable,

maintainable… beautiful!

 Expand your problem-solving skills
 Recognize problems and map them onto the right

abstractions and algorithms

Thinking versus typing

 The sooner you start writing code, the

longer it will take you to get done
 “A year at the lab bench will save you an hour at the library”

 Fact: there are an infinite number of

incorrect programs
 Corollary: the chances that small random tweaks to

your code will result in the right answer are

 If you find yourself changing < to <= in the hopes that

your code will start working, you’re in trouble

 Lesson: think before you type!!

CS3110 challenges

 In previous programming courses smart

students can get away with bad habits
 “Just hack on the code all night until it works”

 Can solve the entire problem by yourself

 Write the whole program before testing any part(!)

 A bit like basketball; CS3110 ≈ NBA
 Professionals need good work habits & right approach

 You will also need to think rigorously about

programs and the models behind them
 Think for a few minutes, rather than type for days!

Rule #1

 Good programmers are lazy

 Never write the same code twice (why?)

 Reuse libraries (why?)

 Keep interfaces small and simple (why?)

 Pick a language that makes it easy to

write the code you need
 Early emphasis on speed is a disaster (why?)

 Rapid prototyping!

Key goal of CS3110

 Master key linguistic abstractions:
 procedural abstraction

 control: iteration, recursion, pattern matching,

laziness, exceptions, events

 encapsulation: closures, ADTs

 parameterization; higher-order procedures, modules

 Mostly in service to rule #1

 Transcend individual programming

languages

Other goals

 Exposure to software eng. techniques:
 modular design.

 unit tests, integration tests.

 critical code reviews.

 Exposure to abstract models:
 models for design & communication.

 models & techniques for proving correctness of code.

 models for space & time.

 Rigorous thinking about programs!
 Proofs, somewhat like high school geometry

Choice of language

 This matters less than you suspect

 Must be able to learn new languages
 This is relatively easy if you understand programming

models and paradigms

 We will be using OCaml, a dialect of ML

 Why use yet another language?
 Not to mention an obscure one??

 Main answer: OCaml programs are much

easier to think about

Why OCaml?

 RDZ’s favorite feature: OCaml makes

certain common errors simply impossible
 More precisely, they fail at compile time

 Early failure is very important (why?)

 OCaml is a functional language
 More on this in a second

 It is statically typed and type-safe
 Lots of bugs are caught at compile time

Imperative Programming

 Program uses commands (a.k.a

statements) that do things to the state of

the system:
 x = x + 1;

 p.next = p.next.next;

 Functions/methods can have side effects
 int wheels(Vehicle v) { v.size++; return v.numw; }

Functional Style

 Idea: program without side effects
 Effect of a function is only to return a result value

 Program is an expression that evaluates to
produce a value (e.g., 4)
 E.g., 2+2

 Works like mathematical expressions

 Enables equational reasoning about programs:
 if x = y, replacing y with x has no effect:

let x = f(0) in x+x same as f(0)+f(0)

Functional Style
 Binding variables to values, not changing values

of existing variables

 No concept of x=x+1 or x++

 These do nothing remotely like x++

let x = x+1 in x

let rec x = x+1 in x

 Former assumes an existing binding for x and
creates a new one (no modification of x), latter is
invalid expression

21

Trends against imperative style
Computer

Program Memory

 Fantasy: program interacts with a single system state
 Interactions are reads from and writes to variables or fields.

 Reads and writes are very fast

 Side effects are instantly seen by all parts of a program

 Reality today: there is no single state
 Multicores have own caches with inconsistent copies of state

 Programs are spread across different cores and computers (PS5 & PS6)

 Side effects in one thread may not be immediately visible in another

 Imperative languages are a bad match to modern hardware

Imperative vs. functional

 ML: a functional programming language
 Encourages building code out of functions

 Like mathematical functions; f(x) always gives the same result

 No side effects: easier to reason about what happens

 Equational reasoning is easier

 A better fit to hardware, distributed and concurrent programming

 Functional style usable in Java, C, …
 Becoming more important with fancy interactive UI’s

and with multiple cores

 A form of encapsulation – hide the state and side
effects inside a functional abstraction

23

Programming Languages Map

Fortran

Haskell Matlab

Pascal

Perl
C

C++

Lisp

OCaml
SML

Java

Functional Imperative

Object-Oriented

Scheme

ML

family

JavaScript

24

Imperative “vs.” functional

 Functional languages:
 Higher level of abstraction

 Closer to specification

 Easier to develop robust software

 Imperative languages:
 Lower level of abstraction

 Often more efficient

 More difficult to maintain, debug

 More error-prone

25

Example 1: Sum Squares

y = 0;

for (x = 1; x <= n; x++) {

y = y + x*x;

}

26

Example 1: Sum Squares

int sumsq(int n) {

y = 0;

for (x = 1; x <= n; x++) {

y += x*x;

}

return n;

}

let rec sumsq (n:int):int =

if n=0 then 0

else n*n + sumsq(n-1)

27

Example 1: Sum Squares

Revisited

Types can be left implicit and are then
inferred: n an integer, returns an integer

let rec sumsq n =

if n=0 then 0

else n*n + sumsq(n-1)

28

Example 1a: Sum f’s

Functions are first-class objects, used as
arguments returned as values

let rec sumop f n =

if n=0 then 0

else f n + sumop f (n-1)

sumop cube 5

sumop (function x -> x*x*x) 5

29

Example 2: Reverse List

List reverse(List x) {

List y = null;

while (x != null) {

List t = x.next;

x.next = y;

y = x;

x = t;

}

return y;

}

30

Example 2: Reverse List

let rec reverse lst =

match lst with

[] -> []

| h :: t -> reverse t @ [h]

Pattern matching simplifies working with data

structures, being sure to handle all cases

31

Example 3: Pythagoras

let pythagoras x y z =

let square n = n*n in

square z = square x + square y

Every expression returns a value, when this

function is applied it returns a Boolean value

32

Why ML?

 ML (esp. Objective Caml) is the most robust and
general functional language available
 Used in financial industry: good for rapid prototyping.

 ML embodies important ideas much better than
Java, C++
 Many of these ideas still work in Java, C++, and you should use

them…

 Learning a different language paradigms will
make you more flexible down the road
 Likely that Java and C++ will be replaced by other languages

 Principles and concepts beat syntax

 Ideas in ML will probably be in next gen languages

33

Rough schedule
 Introduction to functional programming (6)

 Modular programming and functional data
structures (4)

 Reasoning about correctness (4)

 Prelim 1

 Imperative programming and concurrency (4)

 Data structures and analysis of algorithms (5)

 Prelim 2

 Topics: memoization, streams, managed
memory (5)

 Final exam

