
Architecture Design

CIS 3110:

Questions for Today’s Lecture

Architecture Design 2

 How do you develop large-scale software?

 How do you manage a large(ish) developer team?

 How do you divide up responsibilities?

 What happens when you change something?

 Are architecture & programming different?

 Can you do one without the other?

What tools can help with architecture?

10/10/201

1

Architecture Diagram for a

Computer Game

Architecture Design 3
10/10/201

1

Modules (Subsystems)

Module: logical unit of functionality

 Often reusable over applications

 Implementation details hidden behind API

 API: Application Programming Interface

 Collections of methods/functions

 Results of calling them fully documented

 But implementation details are hidden

 Idea: Split modules across programmers

4 Architecture Design
10/10/201

1

Architecture Diagram for a

Computer Game

Architecture Design 5

Module
API

10/10/201

1

Relationship Graph

 Shows when one module “depends” on another

 Module A calls a method/function of Module B

 OO: Module A creates/loads instance of Module B

 General Rule: Does A need the API of B?

Architecture Design 6

Module 3 Module 1 Module 2

Module 1 does not “need” to know about Module 2

10/10/201

1

Dividing up Responsibilities
 Give each programmer a module

 Programmer owns the module

 Final word on implementation

 Owners collaborate w/ neighbors

 Agree on API at graph edges

 “Interface Parties”

 Works, but…

must agree on modules and

responsibilities ahead of time

Architecture Design 7

Module 3

Module 1

Module 2

Owner:

Bob

Owner:

Anne

Owner:

Doug

10/10/201

1

Relationship Graph
 Edges in relationship graph are often directed

 If A calls a method of B, is B aware of it?

 But often undirected in architecture diagrams

 Direction clear from other clues (e.g. layering)

 Developers of both modules should still agree on API

Architecture Design 8

Module 3 Module 1 Module 2

Does Module 1 need to know about Module 2?

10/10/201

1

Nested (Sub)modules
 Can do this recursively

 Module is a piece of software

 Can break it into (sub)modules

 Nested APIs are internal

 Only needed by module owner

 Parent APIs may be different!

 Critical for very large groups

 Each small team gets a module

 Inside the team, break up further

 Even deeper hierarchies possible

Architecture Design 9
10/10/201

1

Module 1

Module 2

Architecture Diagram for a

Computer Game

Architecture Design 10

Nested

Submodule

10/10/201

1

How Do We Get Started?

 Remember the design caveat:

 Must agree on module responsibilities first

 Otherwise, code is duplicated or even missing

 Requires a high-level architecture plan

 Enumeration of all the modules

 What their responsibilities are

 What their relationships are

 Responsibility of the lead architect

Architecture Design 11

10/10/201

1

Architecture Patterns

 Essentially same idea as software pattern

 Template showing how to organize code

 But does not contain any code itself

 Relationship graph + module guidelines

 Only difference is scope

 Software pattern: simple functionality

 Architecture pattern: complete program

Architecture Design 12
10/10/201

1

Model-View-Controller Pattern

Architecture Design 13

Model

 Defines and

manages the data

 Responds to

messages from the

controller

Controller

 Send messages to
model in response
to events

 Update view
about changes in
model

10/10/201

1

Example:

Temperature Converter
 Model: (TemperatureModel.java)

 Stores one value: fahrenheit.

 ADT abstraction presents two values.

 View: (TemperatureConverter.java)

 Constructor creates objects and connects them.

 Main method just calls constructor.

 Controller: Two Listeners

 Respond to window events (GenericWindowListener.java)

 Keep fields consistent (TemperatureListener.java)

Architecture Design 14
10/10/201

1

MVC Illustrated

Architecture Design

TemperatureModel

farenheit 32

View

Model

GenericWindowListener TemperatureListener Controller

15
10/10/201

1

Alternatives to MVC

Architecture Design 16

 Model-View-Presenter

 Presenter is lightweight controller

 View handles controls for GUI

 Model-View-Viewmodel

 Viewmodel translates model into new form

 Useful for customizable UIs

 Three-tier Applications

 Staple of web application development

 … and many others

Design: CRC Cards

 Class-Responsibility-Collaboration

 Class: Represents your module (or class in OO)

 Responsibility: What that module does

 Collaboration: Other modules required

 Called “cards” because often on index card

 English description of your API

 Responsibilities become methods/functions

 Collaboration identifies dependencies

17 Architecture Design
10/10/201

1

CRC Card Examples

AI Controller

Responsibility Collaboration

Pathfinding: Avoiding obstacles Game Object, Scene Model

Strategic AI: Planning future moves Player Model, Action Model

Character AI: NPC personality Game Object, Level Editor Script

Scene Model

Responsibility Collaboration

Enumerates game objects in scene Game Object

Adds/removes game objects to scene Game Object

Selects object at mouse location Mouse Event, Game Object

Module

Name
Controller

Model

18 Architecture Design
10/10/201

1

Creating Your Cards
 Architecture pattern is a start

 Model-View-Controller

 List responsibilities of each

 May be all that you need

(TemperatureConverter)

 Split a module if

 Too much work for one person

 API is too long for one module

 Don’t need to nest (yet)

 Perils of ravioli code

Architecture Design 19
10/10/201

1

Module

Responsibility Collaboration

… …

… …

… …

Creating Your Cards
 Architecture pattern is a start

 Model-View-Controller

 List responsibilities of each

 May be all that you need

(TemperatureConverter)

 Split a module if

 Too much work for one person

 API is too long for one module

 Don’t need to nest (yet)

 Perils of ravioli code

Architecture Design 20
10/10/201

1

Module 1

Responsibility Collaboration

… …

… …

… …

Module 2

Responsibility Collaboration

… …

… …

… …

Avoid Cyclic Collaboration

Y

X
collaborates

with

collaborates

with Y

X

Z

collaborates

with

Controller

21 Architecture Design
10/10/201

1

Architecture Diagram for a

Computer Game

Architecture Design 22
10/10/201

1

CRC Index Card Exercise

23
10/10/201

1

Module 1

Responsibility Collaboration

… Module 2

… Module 3

… Module 4

Module 2

Responsibility Collaboration

… …

… …

… …

Module 2

Responsibility Collaboration

… …

… …

… …

Module 3

Responsibility Collaboration

… …

… …

… …

Try to make

collaborators

adjacent

 If cannot do this, time to

think about nesting!

Designing Module APIs
 Make CRC cards formal

 Turn responsibilities into methods/functions

 Turn collaboration into parameters

Architecture Design 24

Scene Model

Responsibility Method

Enumerates game objects Iterator<GameObject> enumObjects()

Adds game objects to scene void addObject(gameObject)

Removes objects from scene void removeObject(gameObject)

Selects object at mouse GameObject getObject(mouseEvent)

10/10/201

1

Taking This Idea Further

 UML: Unified Modeling Language

 Allows you to specify class relationships

 But models other things

 Examples: data flow, human users

 How useful is it?

 Using a language to program in another language

 But many tools exist for working in UML

 Use as little or as much as you find useful

Architecture Design 25
10/10/201

1

Activity Diagrams

 Define the workflow of your program

 Very similar to a standard flowchart

 Can follow simultaneous paths (threads)

 Are an component of UML

 Good way to identify modules

 Each activity is a responsibility

 Need extra responsibility; create it in CRC

 Responsibility not there; remove from CRC

Architecture Design 26
10/10/201

1

Activity Diagram Example
Find

Beverage

Add Water

to Reservoir

Get

Cups

Put Filter

in Machine

Turn On

Machine

Get Can

of Cola

Brew

Coffee

Pour

Coffee

Drink

Beverage

Put Coffee

in Filter

[found coffee]

[no coffee] [no cola]

[found cola]

27 Architecture Design
10/10/201

1

Activity Diagram Example
Find

Beverage

Add Water

to Reservoir

Get

Cups

Put Filter

in Machine

Turn On

Machine

Get Can

of Cola

Brew

Coffee

Pour

Coffee

Drink

Beverage

Put Coffee

in Filter

[found coffee]

[no coffee] [no cola]

[found cola] Start

End

Synch

Bar

Activity

Guard

Decision

28 Architecture Design

[coffee dispensed]

Synch

Condition

10/10/201

1

Summary

 Modules are important part of software design

 Logical, self-contained unit of functionality

 Elegant way to break up responsibilities in team

 Use relationship graph to model dependencies

 Many tools to help with proper module design

 Start with an architecture pattern

 Use CRC cards to further break up modules

 UML is a popular tool for architecture design

Architecture Design 29
10/10/201

1

