CIS 3110:

Architecture Design




Questions for Today’s Lecture

® How do you develop large-scale software?
® How do you manage a large(ish) developer team?
® How do you divide up responsibilities?
® \What happens when you change something?

® Are architecture & programming different?
® Can you do one without the other?

® \What tools can help with architecture?
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Modules (Subsystems)

® Module: logical unit of functionality
® Often reusable over applications
® |mplementation details hidden behind API

® API: Application Programming Interface
® Collections of methods/functions
® Results of calling them fully documented
® But Implementation details are hidden

® |dea: Split modules across programmers

10/10/201

Architecture Design 1



Architecture Diagram for a
Computer Game

Player

:Game Engine Ap| [ptDevices I Ul E
Co N Module N e '
Q . . [
'( Physics Engin : cndering ucio 11,
g : Y = Discrete 7 Engine Engine | |
s . Simulation m '
ah .| Al Engine , '
< N Engine '
& |(e.g Pathfinding) '
' N N N :
: Compiler Data Management Layer :
g ooTosnsor B P S | i Iy —
2 3 :Game Content '
TN Character Character Ul Models Sounds !
o= Scripts Data Elements and Textures '
AN IS SU——— ) SR | S S ) S

5 Architecture Design 100088

1



Relationship Graph

® Shows when one module “depends’™ on another
® Module A calls a method/function of Module B
® OO: Module A creates/loads instance of Module B

® General Rule: Does A need the API of B?
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Module 1 does not “need” to know about Module 2
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Dividing up Responsibilities

® Give each programmer a module

Owner:
® Programmer owns the module Bob
® Final word on implementation
® Owners collaborate w/ neighbors
® Agree on API at graph edges Owner:

® “Interface Parties” Anne

® Works, but...
must agree on modules and
responsibilities ahead of time

Owner:
Doug
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Relationship Graph

® Edges in relationship graph are often directed
® |f A calls a method of B, is B aware of it?

® But often undirected In architecture diagrams
® Direction clear from other clues (e.g. layering)
® Developers of both modules should still agree on API

oauile

(U J/
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Does Module 1 need to know about Module 2?
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Nested (Sub)modules

® Can do this recursively
® Module is a piece of software
® Can break it into (sub)modules

® Nested APIs are internal
® Only needed by module owner
® Parent APIs may be different!

® Critical for very large groups
® Each small team gets a module

® |nside the team, break up further
® Even deeper hierarchies possible
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How Do We Get Started?

® Remember the design caveat:
® Must agree on module responsibilities first
® QOtherwise, code is duplicated or even missing

® Requires a high-level architecture plan
® Enumeration of all the modules
® \What their responsibilities are
® \What their relationships are

® Responsibility of the lead architect
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Architecture Patterns

® Essentially same idea as software pattern

® Template showing how to organize code
® But does not contain any code itself
® Relationship graph + module guidelines

® Only difference Is scope

12

® Software pattern: simple functionality
® Architecture pattern: complete program
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Model-View-Controller Pattern




Example:
Temperature Converter

® Model: (TemperatureModel.java)
® Stores one value: fahrenheit.
® ADT abstraction presents two values.

® View: (TemperatureConverter.java)
® Constructor creates objects and connects them.
® Main method just calls constructor.

® Controller: Two Listeners
® Respond to window events (GenericWindowL.istener.java)
® Keep fields consistent (TemperatureListener.java)
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MVC lllustrated
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Alternatives to MVC

® Model-View-Presenter
® Presenter is lightweight controller
® View handles controls for GUI

® Model-View-Viewmodel
® \/iewmodel translates model into new form
® Useful for customizable Uls

® Three-tier Applications
® Staple of web application development

® .. and many others
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Design: CRC Cards

® Class-Responsibility-Collaboration
® Class: Represents your module (or class in OO)
® Responsibility: What that module does
® Collaboration: Other modules required

® (Called “cards” because often on Index card

® English description of your API
® Responsibilities become methods/functions
® Collaboration identifies dependencies
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CRC Card Examples wodute

Name

. Controller Al Controller

Responsibility Collaboration
Pathfinding: Avoiding obstacles Game Object, Scene Model

Strategic Al: Planning future moves  Player Model, Action Model

Character Al: NPC personality Game Object, Level Editor Script

- Model Scene Model

Responsibility Collaboration
Enumerates game objects in scene Game Object

Adds/removes game objects to scene  Game Object

Selects object at mouse location Mouse Event, Game Object
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Creating Your Cards

® Architecture pattern is a start
® Model-View-Controller
® List responsibilities of each

® May be all that you neec

(TemperatureConverter) Responsibility

Collaboration

® Splita module if
® Too much work for one person

® API istoo long for one module

® Don’t need to nest (Yyet)
® Perils of ravioli code
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10/10/201
1



Creating Your Cards

® Architecture pattern is a start Module 1
® Model-View-Controller Responsibility Collaboration
® [ ist responsibilities of each

® May be all that you need
(TemperatureConverter)

® Splita module if

® Too much work for one person Responsibility Collaboration
® API istoo long for one module
® Don’t need to nest (Yyet)
® Perils of ravioli code
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Avoid Cyclic Collaboration

Controller

collaborates

L

collaborate
with

collaborates
with




Designer
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CRC Index Card Exercise

Module 2

Collaboration

-
Try to make

collaborators
adjacent

-

Collaboration

Responsibility

Responsibility

Module 2

Responsibility

Collaboration

Module 2
Module 3
Module 4

If cannot do this, time to
think about nesting!

Responsibility

Module 3

Collaboration
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Designing Module APIs

® Make CRC cards formal

® Turn responsibilities into methods/functions

® Turn collaboration into parameters

Scene Model

Responsibility Method

Enumerates game ObjECtS Tterator<GameObject> enumObjects ()

Adds game objects to scene  void addObject (gameObject)

Removes objects from scene  void removeObject (gameObject)
Selects object at mouse GameObject getObject (mouseEvent)
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Taking This Idea Further

e UML.: Unified Modeling Language
® Allows you to specify class relationships

® But models other things UNIFIED o

® Examples: data flow, human users mobeuns I

LANGUAGE
® How useful 1s 1t?

® Using a language to program in another language
® But many tools exist for working in UML
® Use as little or as much as you find useful
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Activity Diagrams

® Define the workflow of your program
® \ery similar to a standard flowchart
® Can follow simultaneous paths (threads)

® Are an component of UML

® Good way to 1dentify modules
® Each activity Is a responsibility
® Need extra responsibility; create it in CRC
® Responsibility not there; remove from CRC
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Activity Diagram Example

[no coffee]

[no cola]

‘ > Find
Beverage
\L [found coffee]

— ' v

Put Coffee Add Water Get
in Filter to Reservoir Cups
Put Filter
in Machine
| !

v

Turn On E Brew
Machine Coffee

Iﬂ \ 2
v

Pour
~ Coffee
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[found cola]

Get Can
of Cola

\ 4
E Drink
Beverage 5 <i>
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Activity Diagram Example

Decision

Find [no coffee] [no cola]
‘ Beverage Guard
Start \l, [found coffee] [found cola]
| I |
N4 Y
Put Coffee Add Water Get Get Can
in Filter to Reservoir Cups of Cola

i Activity
Put Filter
in Machine

J, Synch |

¢ Bar
Miachine Cofte Synch

i offee )
| Condition
X [coffee dispensed]
v v
Pour Drink
~ Coffee Beverage 5 <i> End
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Summary

® Modules are important part of software design
® | ogical, self-contained unit of functionality
® Elegant way to break up responsibilities in team
® Use relationship graph to model dependencies

® Many tools to help with proper module design
® Start with an architecture pattern
® Use CRC cards to further break up modules

® UML is a popular tool for architecture design




