
Architecture Design

CIS 3110:

Questions for Today’s Lecture

Architecture Design 2

 How do you develop large-scale software?

 How do you manage a large(ish) developer team?

 How do you divide up responsibilities?

 What happens when you change something?

 Are architecture & programming different?

 Can you do one without the other?

What tools can help with architecture?

10/10/201

1

Architecture Diagram for a

Computer Game

Architecture Design 3
10/10/201

1

Modules (Subsystems)

Module: logical unit of functionality

 Often reusable over applications

 Implementation details hidden behind API

 API: Application Programming Interface

 Collections of methods/functions

 Results of calling them fully documented

 But implementation details are hidden

 Idea: Split modules across programmers

4 Architecture Design
10/10/201

1

Architecture Diagram for a

Computer Game

Architecture Design 5

Module
API

10/10/201

1

Relationship Graph

 Shows when one module “depends” on another

 Module A calls a method/function of Module B

 OO: Module A creates/loads instance of Module B

 General Rule: Does A need the API of B?

Architecture Design 6

Module 3 Module 1 Module 2

Module 1 does not “need” to know about Module 2

10/10/201

1

Dividing up Responsibilities
 Give each programmer a module

 Programmer owns the module

 Final word on implementation

 Owners collaborate w/ neighbors

 Agree on API at graph edges

 “Interface Parties”

 Works, but…

must agree on modules and

responsibilities ahead of time

Architecture Design 7

Module 3

Module 1

Module 2

Owner:

Bob

Owner:

Anne

Owner:

Doug

10/10/201

1

Relationship Graph
 Edges in relationship graph are often directed

 If A calls a method of B, is B aware of it?

 But often undirected in architecture diagrams

 Direction clear from other clues (e.g. layering)

 Developers of both modules should still agree on API

Architecture Design 8

Module 3 Module 1 Module 2

Does Module 1 need to know about Module 2?

10/10/201

1

Nested (Sub)modules
 Can do this recursively

 Module is a piece of software

 Can break it into (sub)modules

 Nested APIs are internal

 Only needed by module owner

 Parent APIs may be different!

 Critical for very large groups

 Each small team gets a module

 Inside the team, break up further

 Even deeper hierarchies possible

Architecture Design 9
10/10/201

1

Module 1

Module 2

Architecture Diagram for a

Computer Game

Architecture Design 10

Nested

Submodule

10/10/201

1

How Do We Get Started?

 Remember the design caveat:

 Must agree on module responsibilities first

 Otherwise, code is duplicated or even missing

 Requires a high-level architecture plan

 Enumeration of all the modules

 What their responsibilities are

 What their relationships are

 Responsibility of the lead architect

Architecture Design 11

10/10/201

1

Architecture Patterns

 Essentially same idea as software pattern

 Template showing how to organize code

 But does not contain any code itself

 Relationship graph + module guidelines

 Only difference is scope

 Software pattern: simple functionality

 Architecture pattern: complete program

Architecture Design 12
10/10/201

1

Model-View-Controller Pattern

Architecture Design 13

Model

 Defines and

manages the data

 Responds to

messages from the

controller

Controller

 Send messages to
model in response
to events

 Update view
about changes in
model

10/10/201

1

Example:

Temperature Converter
 Model: (TemperatureModel.java)

 Stores one value: fahrenheit.

 ADT abstraction presents two values.

 View: (TemperatureConverter.java)

 Constructor creates objects and connects them.

 Main method just calls constructor.

 Controller: Two Listeners

 Respond to window events (GenericWindowListener.java)

 Keep fields consistent (TemperatureListener.java)

Architecture Design 14
10/10/201

1

MVC Illustrated

Architecture Design

TemperatureModel

farenheit 32

View

Model

GenericWindowListener TemperatureListener Controller

15
10/10/201

1

Alternatives to MVC

Architecture Design 16

 Model-View-Presenter

 Presenter is lightweight controller

 View handles controls for GUI

 Model-View-Viewmodel

 Viewmodel translates model into new form

 Useful for customizable UIs

 Three-tier Applications

 Staple of web application development

 … and many others

Design: CRC Cards

 Class-Responsibility-Collaboration

 Class: Represents your module (or class in OO)

 Responsibility: What that module does

 Collaboration: Other modules required

 Called “cards” because often on index card

 English description of your API

 Responsibilities become methods/functions

 Collaboration identifies dependencies

17 Architecture Design
10/10/201

1

CRC Card Examples

AI Controller

Responsibility Collaboration

Pathfinding: Avoiding obstacles Game Object, Scene Model

Strategic AI: Planning future moves Player Model, Action Model

Character AI: NPC personality Game Object, Level Editor Script

Scene Model

Responsibility Collaboration

Enumerates game objects in scene Game Object

Adds/removes game objects to scene Game Object

Selects object at mouse location Mouse Event, Game Object

Module

Name
Controller

Model

18 Architecture Design
10/10/201

1

Creating Your Cards
 Architecture pattern is a start

 Model-View-Controller

 List responsibilities of each

 May be all that you need

(TemperatureConverter)

 Split a module if

 Too much work for one person

 API is too long for one module

 Don’t need to nest (yet)

 Perils of ravioli code

Architecture Design 19
10/10/201

1

Module

Responsibility Collaboration

… …

… …

… …

Creating Your Cards
 Architecture pattern is a start

 Model-View-Controller

 List responsibilities of each

 May be all that you need

(TemperatureConverter)

 Split a module if

 Too much work for one person

 API is too long for one module

 Don’t need to nest (yet)

 Perils of ravioli code

Architecture Design 20
10/10/201

1

Module 1

Responsibility Collaboration

… …

… …

… …

Module 2

Responsibility Collaboration

… …

… …

… …

Avoid Cyclic Collaboration

Y

X
collaborates

with

collaborates

with Y

X

Z

collaborates

with

Controller

21 Architecture Design
10/10/201

1

Architecture Diagram for a

Computer Game

Architecture Design 22
10/10/201

1

CRC Index Card Exercise

23
10/10/201

1

Module 1

Responsibility Collaboration

… Module 2

… Module 3

… Module 4

Module 2

Responsibility Collaboration

… …

… …

… …

Module 2

Responsibility Collaboration

… …

… …

… …

Module 3

Responsibility Collaboration

… …

… …

… …

Try to make

collaborators

adjacent

 If cannot do this, time to

think about nesting!

Designing Module APIs
 Make CRC cards formal

 Turn responsibilities into methods/functions

 Turn collaboration into parameters

Architecture Design 24

Scene Model

Responsibility Method

Enumerates game objects Iterator<GameObject> enumObjects()

Adds game objects to scene void addObject(gameObject)

Removes objects from scene void removeObject(gameObject)

Selects object at mouse GameObject getObject(mouseEvent)

10/10/201

1

Taking This Idea Further

 UML: Unified Modeling Language

 Allows you to specify class relationships

 But models other things

 Examples: data flow, human users

 How useful is it?

 Using a language to program in another language

 But many tools exist for working in UML

 Use as little or as much as you find useful

Architecture Design 25
10/10/201

1

Activity Diagrams

 Define the workflow of your program

 Very similar to a standard flowchart

 Can follow simultaneous paths (threads)

 Are an component of UML

 Good way to identify modules

 Each activity is a responsibility

 Need extra responsibility; create it in CRC

 Responsibility not there; remove from CRC

Architecture Design 26
10/10/201

1

Activity Diagram Example
Find

Beverage

Add Water

to Reservoir

Get

Cups

Put Filter

in Machine

Turn On

Machine

Get Can

of Cola

Brew

Coffee

Pour

Coffee

Drink

Beverage

Put Coffee

in Filter

[found coffee]

[no coffee] [no cola]

[found cola]

27 Architecture Design
10/10/201

1

Activity Diagram Example
Find

Beverage

Add Water

to Reservoir

Get

Cups

Put Filter

in Machine

Turn On

Machine

Get Can

of Cola

Brew

Coffee

Pour

Coffee

Drink

Beverage

Put Coffee

in Filter

[found coffee]

[no coffee] [no cola]

[found cola] Start

End

Synch

Bar

Activity

Guard

Decision

28 Architecture Design

[coffee dispensed]

Synch

Condition

10/10/201

1

Summary

 Modules are important part of software design

 Logical, self-contained unit of functionality

 Elegant way to break up responsibilities in team

 Use relationship graph to model dependencies

 Many tools to help with proper module design

 Start with an architecture pattern

 Use CRC cards to further break up modules

 UML is a popular tool for architecture design

Architecture Design 29
10/10/201

1

