CIS 3110:

Architecture Design

Questions for Today’s Lecture

® How do you develop large-scale software?
® How do you manage a large(ish) developer team?
® How do you divide up responsibilities?
® \What happens when you change something?

® Are architecture & programming different?
® Can you do one without the other?

® \What tools can help with architecture?

10/10/201

Architecture Design 1

Architecture Diagram for a
Computer Game

Player

:Game Engine Input Devices GUI E
1 . 1
5) : c - 1 1 [
| ohvedes I3 natie P . Rendering Audio ||
g : ’ ° Discrete Engine Engine | |
s . Simulation m '
ah .| Al Engine , '
< N Engine '
& |(e.g Pathfinding) '
' || || | :
: Compiler Data Management Layer :
g ooTosnsor B P S | i Iy —
2 3 :Game Content '
TN Character Character Ul Models Sounds !
o= Scripts Data Elements and Textures '
AN IS SU———) SR | S S) S

3 Architecture Design 100088

1

Modules (Subsystems)

® Module: logical unit of functionality
® Often reusable over applications
® |mplementation details hidden behind API

® API: Application Programming Interface
® Collections of methods/functions
® Results of calling them fully documented
® But Implementation details are hidden

® |dea: Split modules across programmers

10/10/201

Architecture Design 1

Architecture Diagram for a
Computer Game

Player

:Game Engine Ap| [ptDevices I Ul E
Co N Module N e '
Q . . [
'(Physics Engin : cndering ucio 11,
g : Y = Discrete 7 Engine Engine | |
s . Simulation m '
ah .| Al Engine , '
< N Engine '
& |(e.g Pathfinding) '
' N N N :
: Compiler Data Management Layer :
g ooTosnsor B P S | i Iy —
2 3 :Game Content '
TN Character Character Ul Models Sounds !
o= Scripts Data Elements and Textures '
AN IS SU———) SR | S S) S

5 Architecture Design 100088

1

Relationship Graph

® Shows when one module “depends’™ on another
® Module A calls a method/function of Module B
® OO: Module A creates/loads instance of Module B

® General Rule: Does A need the API of B?

oauile

(U J
Y

Module 1 does not “need” to know about Module 2

10/10/201

Architecture Design 1

Dividing up Responsibilities

® Give each programmer a module

Owner:
® Programmer owns the module Bob
® Final word on implementation
® Owners collaborate w/ neighbors
® Agree on API at graph edges Owner:

® “Interface Parties” Anne

® Works, but...
must agree on modules and
responsibilities ahead of time

Owner:
Doug

10/10/201

Architecture Design 1

Relationship Graph

® Edges in relationship graph are often directed
® |f A calls a method of B, is B aware of it?

® But often undirected In architecture diagrams
® Direction clear from other clues (e.g. layering)
® Developers of both modules should still agree on API

oauile

(U J/
Y

Does Module 1 need to know about Module 2?

10/10/201

8 Architecture Design 1

Nested (Sub)modules

® Can do this recursively
® Module is a piece of software
® Can break it into (sub)modules

® Nested APIs are internal
® Only needed by module owner
® Parent APIs may be different!

® Critical for very large groups
® Each small team gets a module

® |nside the team, break up further
® Even deeper hierarchies possible

Architecture Diagram for a
Computer Game

4 3\
Plaver Nested

e e e — o - seez=o--------ooo oo *L .| Submodule |[------.- .
:Game Engine Input Devices GUI 7(—) E
: N :
5) : c . 1 1 [
| ohvedes I3 natie P . Rendering Audio ||
g : Y ° Discrete Engine Engine | |
S : Simulation I '
ah .| Al Engine : '
< N Engine '
& |(e.g Pathfinding) '
' || || | :
: Compiler Data Management Layer :
R i P B T i I, —
2 3 :Game Content '
TN Character Character Ul Models Sounds :
o= Scripts Data Elements and Textures '
AN IS SU———) SR | S S) S

10 Architecture Design 0.0 2H

1

How Do We Get Started?

® Remember the design caveat:
® Must agree on module responsibilities first
® QOtherwise, code is duplicated or even missing

® Requires a high-level architecture plan
® Enumeration of all the modules
® \What their responsibilities are
® \What their relationships are

® Responsibility of the lead architect

10/10/201

11 Architecture Design 1

Architecture Patterns

® Essentially same idea as software pattern

® Template showing how to organize code
® But does not contain any code itself
® Relationship graph + module guidelines

® Only difference Is scope

12

® Software pattern: simple functionality
® Architecture pattern: complete program

10/10/201

Architecture Design 1

Model-View-Controller Pattern

Example:
Temperature Converter

® Model: (TemperatureModel.java)
® Stores one value: fahrenheit.
® ADT abstraction presents two values.

® View: (TemperatureConverter.java)
® Constructor creates objects and connects them.
® Main method just calls constructor.

® Controller: Two Listeners
® Respond to window events (GenericWindowL.istener.java)
® Keep fields consistent (TemperatureListener.java)

10/10/201

14 Architecture Design 1

MVC lllustrated

'O O © Temperature Converter

VIeW FarenhE|t| B2. GD| CE"tlﬂfﬂdE| |

N\

Controller GenericWindowL.istener TemperatureListener

e

TemperatureModeI

M Odel farenheit

Alternatives to MVC

® Model-View-Presenter
® Presenter is lightweight controller
® View handles controls for GUI

® Model-View-Viewmodel
® \/iewmodel translates model into new form
® Useful for customizable Uls

® Three-tier Applications
® Staple of web application development

® .. and many others

Architecture Design

Design: CRC Cards

® Class-Responsibility-Collaboration
® Class: Represents your module (or class in OO)
® Responsibility: What that module does
® Collaboration: Other modules required

® (Called “cards” because often on Index card

® English description of your API
® Responsibilities become methods/functions
® Collaboration identifies dependencies

10/10/201

17 Architecture Design 1

CRC Card Examples wodute

Name

. Controller Al Controller

Responsibility Collaboration
Pathfinding: Avoiding obstacles Game Object, Scene Model

Strategic Al: Planning future moves Player Model, Action Model

Character Al: NPC personality Game Object, Level Editor Script

- Model Scene Model

Responsibility Collaboration
Enumerates game objects in scene Game Object

Adds/removes game objects to scene Game Object

Selects object at mouse location Mouse Event, Game Object

10/10/201

18 Architecture Design 1

Creating Your Cards

® Architecture pattern is a start
® Model-View-Controller
® List responsibilities of each

® May be all that you neec

(TemperatureConverter) Responsibility

Collaboration

® Splita module if
® Too much work for one person

® API istoo long for one module

® Don’t need to nest (Yyet)
® Perils of ravioli code

19 Architecture Design

10/10/201
1

Creating Your Cards

® Architecture pattern is a start Module 1
® Model-View-Controller Responsibility Collaboration
® [ist responsibilities of each

® May be all that you need
(TemperatureConverter)

® Splita module if

® Too much work for one person Responsibility Collaboration
® API istoo long for one module
® Don’t need to nest (Yyet)
® Perils of ravioli code
20 Architecture Design L0L00icn

1

Avoid Cyclic Collaboration

Controller

collaborates

L

collaborate
with

collaborates
with

Designer

Architecture Diagram for a
Computer Game

Player
Devices GUI
e\ " . .
. Rendering Audio
Discrete Engine Engine
: Simulation m

s Al Engine :
S | N Engine
& |(e.g Pathfinding)

1 || || ||

: Compiler Data Management Layer
BIREREEERKEREE o T | Py —
% :Game Content Character Character Ul Models Sounds
= | Scripts Data Elements and Textures
I P SU— SI—) S SN SS—
22 Architecture Design 10010

1

CRC Index Card Exercise

Module 2

Collaboration

-
Try to make

collaborators
adjacent

-

Collaboration

Responsibility

Responsibility

Module 2

Responsibility

Collaboration

Module 2
Module 3
Module 4

If cannot do this, time to
think about nesting!

Responsibility

Module 3

Collaboration

10/10/201

1

Designing Module APIs

® Make CRC cards formal

® Turn responsibilities into methods/functions

® Turn collaboration into parameters

Scene Model

Responsibility Method

Enumerates game ObjECtS Tterator<GameObject> enumObjects ()

Adds game objects to scene void addObject (gameObject)

Removes objects from scene void removeObject (gameObject)
Selects object at mouse GameObject getObject (mouseEvent)

24 Architecture Design 10/10/ 20%

Taking This Idea Further

e UML.: Unified Modeling Language
® Allows you to specify class relationships

® But models other things UNIFIED o

® Examples: data flow, human users mobeuns I

LANGUAGE
® How useful 1s 1t?

® Using a language to program in another language
® But many tools exist for working in UML
® Use as little or as much as you find useful

10/10/201

25 Architecture Design 1

Activity Diagrams

® Define the workflow of your program
® \ery similar to a standard flowchart
® Can follow simultaneous paths (threads)

® Are an component of UML

® Good way to 1dentify modules
® Each activity Is a responsibility
® Need extra responsibility; create it in CRC
® Responsibility not there; remove from CRC

10/10/201

26 Architecture Design 1

Activity Diagram Example

[no coffee]

[no cola]

‘ > Find
Beverage
\L [found coffee]

— ' v

Put Coffee Add Water Get
in Filter to Reservoir Cups
Put Filter
in Machine
| !

v

Turn On E Brew
Machine Coffee

Iﬂ \ 2
v

Pour
~ Coffee

27 Architecture Design

[found cola]

Get Can
of Cola

\ 4
E Drink
Beverage 5 <i>

10/10/201
1

Activity Diagram Example

Decision

Find [no coffee] [no cola]
‘ Beverage Guard
Start \l, [found coffee] [found cola]
| I |
N4 Y
Put Coffee Add Water Get Get Can
in Filter to Reservoir Cups of Cola

i Activity
Put Filter
in Machine

J, Synch |

¢ Bar
Miachine Cofte Synch

i offee)
| Condition
X [coffee dispensed]
v v
Pour Drink
~ Coffee Beverage 5 <i> End
28 Architecture Design 10/10/201

1

Summary

® Modules are important part of software design
® | ogical, self-contained unit of functionality
® Elegant way to break up responsibilities in team
® Use relationship graph to model dependencies

® Many tools to help with proper module design
® Start with an architecture pattern
® Use CRC cards to further break up modules

® UML is a popular tool for architecture design

