CIS 3110:

Architecture Design

Questions for Today's Lecture

- How do you develop large-scale software?
 - How do you manage a large(ish) developer team?
 - How do you divide up responsibilities?
 - What happens when you change something?
- Are architecture & programming different?
 - Can you do one without the other?
- What tools can help with architecture?

Architecture Diagram for a Computer Game

Modules (Subsystems)

- Module: logical unit of functionality
 - Often reusable over applications
 - Implementation details hidden behind API

• API: Application Programming Interface

- Collections of methods/functions
- Results of calling them fully documented
- But implementation details are hidden
- Idea: Split modules across programmers

Architecture Diagram for a Computer Game

Relationship Graph

- Shows when one module "depends" on another
 - Module A calls a method/function of Module B
 - OO: Module A creates/loads instance of Module B
- General Rule: Does *A* need the API of *B*?

Dividing up Responsibilities

Give each programmer a module Programmer **owns** the module Final word on implementation Owners collaborate w/ neighbors Agree on API at graph edges "Interface Parties" Works, but... must agree on modules and responsibilities ahead of time

Relationship Graph

- Edges in relationship graph are often **directed**
 - If *A* calls a method of *B*, is *B* aware of it?
- But often undirected in architecture diagrams
 - Direction clear from other clues (e.g. layering)
 - Developers of both modules should still agree on API

Nested (Sub)modules

- Can do this **recursively**
 - Module is a piece of software
 - Can break it into (sub)modules
- Nested APIs are **internal**
 - Only needed by module owner
 - Parent APIs may be different!
- Critical for very **large groups**
 - Each small team gets a module
 - Inside the team, break up further
 - Even deeper hierarchies possible

Architecture Diagram for a Computer Game

Architecture Design

How Do We Get Started?

- Remember the design caveat:
 - Must agree on module responsibilities first
 - Otherwise, code is **duplicated** or even **missing**
- Requires a high-level architecture plan
 - Enumeration of all the modules
 - What their responsibilities are
 - What their relationships are
- Responsibility of the lead architect

Architecture Patterns

- Essentially same idea as **software pattern**
 - Template showing how to organize code
 - But does not contain any code itself
 - Relationship graph + module guidelines
- Only difference is **scope**
 - **Software pattern**: simple functionality
 - Architecture pattern: complete program

 $10/10/20^{\circ}$

Model-View-Controller Pattern

Example: Temperature Converter

- Model: (TemperatureModel.java)
 - Stores one value: fahrenheit.
 - ADT abstraction presents two values.
- View: (TemperatureConverter.java)
 - Constructor creates objects and connects them.
 - Main method just calls constructor.
- Controller: Two Listeners
 - Respond to window events (GenericWindowListener.java)
 - Keep fields consistent (TemperatureListener.java)

MVC Illustrated

Architecture Design

Alternatives to MVC

- Model-View-Presenter
 - Presenter is lightweight controller
 - View handles controls for GUI
- Model-View-Viewmodel
 - Viewmodel translates model into new form
 - Useful for customizable UIs
- Three-tier Applications
 - Staple of web application development

Architecture Design

• ... and many others

Design: CRC Cards

- Class-Responsibility-Collaboration
 - **Class**: Represents your module (or *class* in OO)
 - **Responsibility**: What that module does
 - Collaboration: Other modules required
- Called "cards" because often on index card
- English description of your API
 - Responsibilities become methods/functions
 - Collaboration identifies dependencies

CRC Card Examples

Controller AI Controller Name	
Responsibility	Collaboration
Pathfinding: Avoiding obstacle	s Game Object, Scene Model
Strategic AI: Planning future m	oves Player Model, Action Model
Character AI: NPC personality	Game Object, Level Editor Script

Module

10/10/201

ЪT

Model	Scene Model
Responsibility	Collaboration
Enumerates game objects in	scene Game Object
Adds/removes game objects	to scene Game Object
Selects object at mouse locat	ion Mouse Event, Game Object

Architecture Design

Creating Your Cards

- Architecture pattern is a start
 - Model-View-Controller
 - List responsibilities of each
 - May be all that you need (TemperatureConverter)
- Split a module if
 - Too much work for one person
 - API is too long for one module
- Don't need to nest (yet)
 - Perils of **ravioli code**

Module		
Responsibility	Collaboration	

Creating Your Cards

- Architecture pattern is a start
 - Model-View-Controller
 - List responsibilities of each
 - May be all that you need (TemperatureConverter)
- Split a module if
 - Too much work for one person
 - API is too long for one module
- Don't need to nest (**yet**)
 - Perils of **ravioli code**

Module 1		
Responsibility	Collaboration	

Module 2		
Responsibility	Collaboration	

Avoid Cyclic Collaboration

Architecture Diagram for a Computer Game

CRC Index Card Exercise

Responsibility

...

. . .

...

Collaboration

. . .

. . .

. . .

0/10/201

If cannot do this, time to think about nesting!

Designing Module APIs

- Make CRC cards formal
- Turn responsibilities into methods/functions
- Turn collaboration into parameters

Scene Model		
Responsibility	Method	
Enumerates game objects	<pre>Iterator<gameobject> enumObjects()</gameobject></pre>	
Adds game objects to scene	<pre>void addObject(gameObject)</pre>	
Removes objects from scene	<pre>void removeObject(gameObject)</pre>	
Selects object at mouse	GameObject getObject(mouseEvent)	

Taking This Idea Further

- UML: Unified Modeling Language
 - Allows you to specify class relationships
 - But models other things
 - Examples: data flow, human users

- How useful is it?
 - Using a language to program in another language
 - But many tools exist for working in UML
 - Use as little or as much as you find useful

Activity Diagrams

- Define the **workflow** of your program
 - Very similar to a standard flowchart
 - Can follow simultaneous paths (threads)
- Are an component of UML
- Good way to identify modules
 - Each activity is a responsibility
 - Need extra responsibility; create it in CRC
 - Responsibility not there; remove from CRC

Activity Diagram Example

Activity Diagram Example

Summary

- Modules are important part of software design
 - Logical, self-contained unit of functionality
 - Elegant way to break up responsibilities in team
 - Use relationship graph to model dependencies
- Many tools to help with proper module design
 - Start with an architecture pattern
 - Use CRC cards to further break up modules
- UML is a popular tool for architecture design