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Automatic Garbage Collection 

Announcements: 

 PS6 due Monday 12/6 at 11:59PM 

 Final exam on Thursday 12/16 

o PS6 tournament and review session that week 

Garbage 

 In OCaml programs (and in most other programming languages), it is 

possible to create garbage: allocated space that is no longer usable by the 

program.  

 For example, consider this code: 

let x =[[1;2;3];[4]] in 

let y = [2]::List.tl x in 

   y 

 

 Here the variable x is bound to a list of two elements, each of which is itself 

a list.  

 Then the variable y is bound to a list that drops the first element of x and 

adds a different first element and the function returns this new list.  

 Since x is never used again that first list is inaccessible, or garbage. 
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Reachability 

 Any boxed value created by OCaml can become garbage.  

 This includes tuples, records, strings, arrays, lists and function closures as 

well as most user-defined data types. 

 Most garbage collectors are based on the idea of reclaiming whole blocks 

that are no longer reachable from a set of roots,  

o which are pointers into the heap that are assumed to always be 

accessible.  

 The roots of a given computation consist of pointers that appear in the 

environment, plus the pointer to the currently computed result.  

 A block of memory is reachable from the roots if there is a direct pointer to 

that block among the roots,  

o or if there is a pointer to that block in another block that is reachable 

from the roots. 

 Looking a memory more abstractly, we see that the memory heap is simply 

a directed graph in which the nodes are blocks of memory and the edges 

are the pointers between these blocks.  

 So reachability can be computed as a graph traversal. 
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Circular data structures 

 A particularly challenging type of data structure 

o Extremely popular in interview questions 

o Likely to appear on CS3110 final exam 

 

 Motivation: suppose you need a buffer, for instance to hold the last 100 

stock quotes on the NYSE 

o Some other thread is reading them and discarding them 

o Similar issues for, e.g., audio/video buffering 

 

 Natural solution is a queue, which is ideal for unbounded input 

 But our input size is bounded, and we can exploit this 

 Make an nlist with 100 elements, and have the last one’s tail point to the 

first one 

 Tiny example: 

 

type nlist = Nnil | Ncons of (int * nlist ref) 
 
let n1 = Ncons(1, ref Nnil) 
 
let Ncons(a,b) = n1 in b := n1 

 We need to keep track of where we are adding data and where we are 

removing data (i.e., the tail and head of the queue) 

 Simple questions: how many elements does this circular list have? 

o Not trivial, need to use == instead of = 

 Harder questions: efficiently detect or reverse circular nlists 
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Explicit vs. automatic garbage collection 

 There are two basic strategies for dealing with garbage:  

o explicit garbage collection by the programmer,  

o and automatic garbage collection built into the language run-time 

system.  

 Explicit garbage collection is provided by languages like C and C++.  

 There is a way to explicitly deallocate (or "free") allocated memory when it 

is expected that that memory is about to become garbage.  

 Languages like Java and OCaml provide automatic garbage collection :  

 the system automatically identifies blocks of memory that can never be 

used again by the program,  

o and reclaims their space for use by later allocations. 

 

 Automatic garbage collection offers the advantage that the programmer 

does not have to worry about when to deallocate a given block of memory. 

  In languages like C the need to explicitly manage memory complicates any 

code that allocates data on the heap, and is a significant burden on the 

programmer.  

 Worse, if the programmer fails to deallocate properly, bugs are introduced 

into the program that are hard to find: 

 

o If the programmer neglects to deallocate some garbage, it creates a 

memory leaks in which some allocated memory can never again be 

reused.  

o This is a program for long-running programs which will tends to grow 

in size until they consume all of memory. 

 

o If the programmer is too aggressive and deallocates a block of 

memory that is still in use, this creates a dangling pointer that may 

be followed later even though it now points to unallocated memory 

or to a new allocated value that may be of a different type. 
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o If a block of memory is deallocated twice, this typically corrupts the 

memory heap data structure even if the block was initially garbage.  

o Corruption of the memory heap is likely to cause unpredictable 

effects later during execution and be difficult to debug. 

 

 In practice, programmers manage explicit allocation and deallocation by 

keeping track of what piece of code "owns" each pointer in the system. 

 That piece of code is responsible for deallocating the pointer later.  

 The tracking of pointer ownership shows up in the specifications of code 

that manipulates pointers, complicating specification, and use, and 

implementation of the abstraction. 

 

 Automatic garbage collection helps modular programming, because two 

modules can share a value without having to agree on which module is 

responsible for deallocating it.  

 The details of how boxed values will be managed does not pollute the 

interfaces in the system. 
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Requirements for automatic garbage collection 

 Many programs written in OCaml (and Java) generate garbage at a high 

rate, so it is important to have an effective way to collect the garbage. The 

following properties are desirable in a garbage collector: 

o It should identify most garbage 

o Anything it identifies as garbage must be garbage [SOUNDNESS] 

o It should impose a low added time overhead 

o During garbage collection the program may be paused; these pauses 

should be short 

 Fortunately modern garbage collectors provide all of these important 

properties. We will not have time for a complete survey of modern garbage 

collection techniques, but we can look at some simple garbage collectors. 
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Identifying pointers 

 To compute reachability accurately, the garbage collector needs to be able 

to identify pointers; that is, the edges in the graph.  

 Since a word of memory cells is just a sequence of bits, how can the 

garbage collector tell apart a pointer from an integer?  

 

 One simple strategy is to reserve a bit in every word to indicate whether 

the value in that word is a pointer or not.  

 This tag bit uses up about 3% of memory, which may be acceptable. It also 

limits the range of integers (and pointers) that can be used.  

 On a 32-bit machines, using a single tag bit means that integers can go up 

to about 1 billion, and that the machine can address about 2GB instead of 

the 4GB that would otherwise be possible.  

 Adding tag bits also introduces a small run-time cost that is incurred during 

arithmetic or when dereferencing a pointer. 

 

 A different solution is to have the compiler record information that the 

garbage collector can query at run time to find out the types of the various 

locations on the stack.  

 Given the types of stack locations, the successive pointers can be followed 

from these roots and the types used at even step to determine where the 

pointers are.  

 This approach avoids the need for tag bits but is substantially more 

complicated because the garbage collector and the compiler become more 

tightly coupled. 
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 Finally, it is possible to build a garbage collector that works even if you can't 

tell apart pointers and integers.  

 The idea is that if the collector encounters something that looks like it 

might be a pointer, it treats it as if it is one, and the memory block it points 

to is treated as reachable.  

 Memory is considered unreachable only if there is nothing that looks like it 

might be a pointer to it.  

 

 This kind of collector is called a conservative collector because it may fail to 

collect some garbage, but it won't deallocate anything but garbage.  

 In practice it works pretty well because most integers are small and most 

pointers look like large integers.  

 So there are relatively few cases in which the collector is not sure whether 

a block of memory is garbage.  
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Mark and sweep collection 

 Mark-and-sweep proceeds in two phases:  

o a mark phase in which all reachable memory is marked as reachable,  

o and a sweep phase in which all memory that has not been marked is 

deallocated.  

 This algorithm requires that every block of memory have a bit reserved in it 

to indicate whether it has been marked. 

 

 Marking for reachability is essentially a graph traversal; it can be 

implemented as either a depth-first or a breadth-first traversal, though 

depth-first traversal is likely to be faster.  

 One problem with a straightforward implementation of marking is that 

graph traversal takes O(n) space where n is the number of nodes.  

 However, this is not as bad as the graph traversal we considered earlier, 

one needs only a single bit per node in the graph if we modify the nodes to 

explicitly mark them as having been visited in the search.  

 Nonetheless, if garbage collection is being performed because the system is 

low on memory, there may not be enough added space to do the marking 

traversal itself.  

 

 A simple solution is to always make sure there is enough space to do the 

traversal.  

 A cleverer solution is based on the observation that there is O(n) space 

available already in the objects being traversed.  

 It is possible to record the extra state needed during a depth-first traversal 

on top of the pointers being traversed.  

 This trick is known as pointer reversal. It works because when returning 

from a recursive call to the marking routine, the code knows what object it 

came from.  
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 Therefore, the predecessor object that pointed to it does not need the 

word of storage that it was using to store the pointer; it can be restored on 

return.  

 That word of storage is used during the recursive call to store the pointer to 

the predecessor's predecessor, and so on.  

 In the sweep phase all unmarked blocks are deallocated. This phase 

requires the ability to find all the allocated blocks in the memory heap, 

which is possible with a little more bookkeeping information per each 

block. 

Triggering garbage collection 

 When should the garbage collector be invoked?  

 An obvious choice is to do it whenever the process runs out of memory.  

 However, this may create an excessively long pause for garbage collection.  

 Also, it is likely that memory is almost completely full of garbage when 

garbage collection is invoked.  

 This will reduce overall performance and may also be unfair to other 

processes that happen to be running on the same computer.  

 Typically, garbage collectors are invoked periodically, perhaps after a fixed 

number of allocation requests are made, or a number of allocation requests 

that is proportional to the amount of non-garbage (live) data after the last 

GC was performed.  
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Reducing GC pauses 

 One problem with mark-and-sweep is that it can take a long time -- it has to 

scan through the entire memory heap.  

 While it is going on, the program is usually stopped.  

 Thus, garbage collection can cause long pauses in the computation.  

 This can be awkward if, for example, one is relying on the program to, say, 

help pilot an airplane.  

 To address this problem there are incremental garbage collection 

algorithms that permit the program to keep computing on the heap in 

parallel with garbage collection, and generational collectors that only 

compute whether memory blocks are garbage for a small part of the heap. 

Compacting (copying) garbage collection 

Collecting garbage is nice, but the space that it creates may be scattered among many 

small blocks of memory. This external fragmentation may prevent the space from being used 

effectively. A compacting (or copying) collector is one that tries to move the blocks of allocated 

memory together, compacting them so that there is no unused space between them. 

Compacting collectors tend to cause caches to become more effective, improving run-time 

performance after collection. 

Compacting collectors are difficult to implement because they change the locations of the 

objects in the heap. This means that all pointers to moved objects must also be updated. 

Finding all these pointers can be expensive and requires added storage or time. 

Some compacting collectors work by using an object table containing pointers to all 

allocated objects. Objects themselves only contain pointers into (or indices of) the object table. 

This solution makes it possible to move all allocated objects around because there is only one 

pointer to each object. However, it doubles the cost of following a pointer. 

Reference counting 

A final technique for automatic garbage collection that is occasionally used is reference 

counting. The idea is to keep track for each block of memory how many pointers there are 

incoming to that block. When the count goes to zero, the block must be unreachable and can 

be deallocated. 

There are a few problems with this conceptually simple solution: 
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 It imposes a lot of run-time overhead, because each time a pointer is updated, 

the reference counts of two blocks of memory must be updated (one incremented, one 

decremented). This cost can be reduced by doing compile-time analysis to determine 

which increments and decrements are really needed. 

 It can take a long time, because deallocating one object can cause a cascade of 

other objects to be deallocated at the same time. The solution to this problem is to put 

objects to be deallocated onto a queue. When an allocation for n bytes is performed, 

objects taking up space totaling at least n bytes are dequeued and deallocated, 

possibly causing more objects to lose all their references and be enqueued. 

 It cannot collect garbage that lies in a cycle in the heap graph, because the 

reference counts will never go down to zero. Cyclical data structures are common, for 

instance with many representations of directed graphs. 

Generational garbage collection 

Generational garbage collection separates the memory heap into two or more generations 

that are collected separately. In the basic scheme, there are tenured and new (untenured) 

generations. Garbage collection is mostly run on the new generation (minor collections), with 

less frequent scans of older generations (major collections). The reason this works well is that 

most allocated objects die young; in many programs, the longer an object has lasted, the 

longer it is likely to continue to last. Minor collections are much faster because they run on a 

smaller heap. The garbage collector doesn't waste time trying to collect long-lived objects. 

After an allocated object survives some number of minor garbage collection cycles, it is 

promoted to the tenured generation so that minor collections stop spending time trying to 

collect it. 

Generational collectors introduce one new overhead. Suppose a program mutates a 

tenured object to point to an untenured object. Then the untenured object is reachable from 

the tenured set and should not be collected. The pointers from the tenured to the new 

generation are called the remembered set, and the garbage collector must treat these 

pointers as roots. The language run-time system needs to detect the creation of such pointers. 

Such pointers can only be created by imperative update; that is the only way to make an old 

object point to a newer one. Therefore, imperative pointer updates are often more expensive 

than you might expect. Of course, a functional language like OCaml discourages these 

updates, which means that they are usually not a performance issue. 

Copying collectors 

The goal of a garbage collector is to automatically discover and reclaim fragments of 

memory that will no longer be used by the computation. It turns out that during evaluation of a 
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high-level program, we allocate lots of little objects that are only in use for short periods of 

time and can be effectively recycled.   

Most garbage collectors are based on the idea of reclaiming whole objects that are no 

longerreachable from a root set.  In the case of our interpreter, we only access memory 

objects through the stack and through pointers.  So any object that isn't reachable from the 

stack, following the pointers contained within other objects, can be safely reclaimed by a 

garbage collector. 

At an abstract level, all a copying collector does is start from a set of roots (in our case, the 

operand stack), and traverse all of the reachable memory-allocated objects, copying them 

from one half of memory into the other half.  The area of memory that we copy from is 

called old space (or from-space) and the area of memory that we copy to is called new 

space (or to-space).  When we copy the reachable data, we compact it so that it is in a 

contiguous chunk.  So, in effect, we squeeze out the holes in memory that the garbage data 

occupied.  After the copy and compaction, we end up with a compacted copy of the data in 

new space data and a (hopefully) large, contiguous area of memory in new space in which we 

can quickly and easily allocate new objects.  The next time we do garbage collection, the roles 

of old space and new space will be reversed.  

For example, suppose memory looks something like this, where the colored boxes 

represent different objects, and the thin black box in the middle represents the half-way point 

in memory. 

Obj 

1 

Obj 

2 

Obj 

3 

Ob

j 4 

O

bj 5 

  
     

At this point, we've filled up half of memory and so we initiate a collection.  Old space is on 

the left and new space on the right.  Suppose further that only the red and light-blue boxes 

(objects 2 and 4) are reachable from the stack.  After copying and compacting, we would have 

a picture like this: 

Obj 1 Obj 2 Obj 3 Obj 4 Obj 5   Obj 2' Obj 4' 
   

Notice that we copied the live data (the red and light-blue objects) into new space, but left 

the unreachable data in the first half.  Now we can "throw away" the first half of memory (this 

doesn't really require any work): 

     
  Obj 2 Obj 4 

   

After copying the data into new space, we restart the computation where it left off.  The 

computation continues allocating objects, but this time allocates them in the other half of 
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memory (i.e., new space).  The fact that we compacted the data makes it easy for the 

interpreter to allocate objects, because it has a large, contiguous hunk of free memory.  So, 

for instance, we might allocate a few more objects: 

     
  Obj 2 Obj 4 Obj 6 Obj 7 Obj 8 

When the new space fills up and we are ready to do another collection, we flip our notions 

of new and old.  Now old space is on the right and new space on the left.  Suppose now that 

the light-blue (Obj 4), yellow (Obj 6), and grey (Obj 8) boxes are the reachable live objects.  

We copy them into the other half of memory and compact them, throwing away the old data: 

Obj 4 Obj 6 Obj 8 
  

  
     

What happens if we do a copy but there's no extra space left over?  Typically, the garbage 

collector will ask the operating system for more memory.  If the OS says that there's no more 

available (virtual) memory, then the collector throws up its hands and terminates the whole 

program.  

Implementation Details (for the interested) 

It is surprisingly simple to build a copying garbage collector.  

First, we need one more register scanptr, which will be used as an index into memory.  

Thescanptr initially contains the base address of the new space (i.e., the address of the first 

word where we will  copy objects.)  We also set the allocptr to the base address of the new 

space.  We will use the allocptr to remember where to allocate objects as we copy them 

from old space to new space. The purpose of the scanptr will be made clear below. 

Second, starting from an array of roots (in our case, the values pushed on the operand 

stack), we examine each root to see whether or not it's a pointer.  If so, we copy the object 

that the pointer references from old space to new space.  We can figure out how big the object 

is, because it always starts with a Tag_v value specifying its length (but see below.)  As we 

copy the object, we place it where the allocptr currently is, and then increment 

the allocptr by the appropriate amount so that it points to the next available spot in new 

space. 

After we copy the object, we need to update the array of roots so that it points to the new 

copy of the object.  We also need to leave a forwarding pointer in the object's previous 

location in old space indicating that the object has already been moved and where it was 

moved to, in case we run into this particular object again while traversing the graph of 

reachable objects in old space.  (This prevents us from going into an infinite loop if there are 

cycles in the graph, and there typically will be cycles if we use recursive functions.)  We can 
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do this by overwriting the Tag_vvalue on the old copy of the object with a forwarding pointer, 

represented in our abstract machine by Forward_v(i) values, where i is the address in 

new space of the new copy of the object. 

Before trying to copy any object, we should check first to see if the object has already been 

forwarded.  If so, then we should update the root with the address of the copied object that we 

find in the forwarding pointer. 

So, we need a procedure forward which, when given an address a, (1) checks to see if 

the object at a has been forwarded or not -- if so, forward immediately returns the address of 

the forwarded object, (2) otherwise, copies the object from old space to new space, 

incrementingallocptr appropriately, (3)  overwrites the old objects Tag_v with a forwarding 

pointer to the new copy, (4) returns the address of the new copy of the object. 

Processing the roots then becomes a simple loop which simply checks to see of a root 

value is a pointer, and if so, calls forward, and updates the root array with the new address of 

the object. 

After processing the roots, you've managed to copy all of the data that are immediately 

reachable from the roots.  However, we must also process all of the data that are reachable 

from these objects (and then all the data reachable from those objects, and so on.)  This is the 

purpose of the scanptr register.  

After forwarding the root objects, we must then examine each of their components to see if 

there are any pointers.  Any pointers in those objects must also be forwarded from old space 

to new space.  The process of examining a copied object for pointers and forwarding those 

objects is called scanning the object.  

The scanptr register is used to keep track of which objects have been forwarded but not 

yet scanned.  In particular, the scanptr starts off as the same address as the allocptr.  

After forwarding all of the roots, we start scanning the object pointed to by the scanptr.  This 

will be the first object that we copied during the root processing.  After scanning this object, we 

increment the scan pointer so that it points to the next object to be scanned.  The scan pointer 

thus moves only from left to right. 

During scanning, we need to look at each value in the object.  If the value is a pointer, it 

should be forwarded.  This may cause the allocptr to move.  But because the newly copied 

object comes after the object being scanned, we will eventually scan it and any objects that it 

references will also be copied into new space. 

The whole process stops when the scanptr catches up to the allocptr, for then all 

reachable objects have been successfully forwarded from old space to new space.  At this 

point, we need to reset the limitptr and the startptr appropriately.  We also need to 

check that there is enough free space for the computation to make progress.  If not, then 
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an OutOfMemoryexception should be raised.  (Otherwise, the interpreter will go into an 

infinite loop trying to garbage collect forever.) 

Note that we are effectively using a queue to keep track of those objects in the graph that 

have been forwarded but not yet scanned.  We insert items at the end of the queue 

(where allocptrpoints) and remove objects to be scanned from the front of the queue 

(where scanptr points).  It's possible to use a different data structure such as a stack to keep 

track of those objects that have been copied but not yet scanned, but doing so usually 

requires an extra hunk of memory.  

Note that by using a queue in the graph traversal, the copying collection effectively does 

abreadth-first traversal of the data.  If we used a stack instead of a queue, the traversal 

would bedepth-first.   

It should also be noted that what we have described is a fairly simple take on garbage 

collection.  There are many different algorithms, such as Mark and Sweep, Generational, 

Incremental, Mostly-Copying, etc.  Often, a good implementation will combine many of these 

techniques to achieve good performance.  You can learn about these techniques in a number 

of places---perhaps the best place to start is the Online GC FAQ. 

Real-world garbage collectors 

OCaml uses a hybrid generational garbage collector, where small objects are created and 

managed on one heap (minor) and large objects on another heap (major). The minor heap is 

collected frequently and the major less frequently. Objects that exist for sufficiently long in the 

minor heap are moved to the major one. 

The Java5 garbage collector is also a generational collector. In the two youngest 

generations, a copying collector is used. However, a mark-compact collector manages the 

third and oldest generation. This collector marks the live objects in the heap, then slides them 

toward the beginning of the heap, overwriting any garbage in the process. Java 5 also makes 

two other collectors available: a concurrent copying collector for young generations, and a 

concurrent mark-sweep collector for the old generation. 

 

http://iecc.com/gclist/GC-faq.html

