
1

Computability
Announcements:

• PS6 due Monday 12/6 at 11:59PM
o I will push the course staff about office hours and the newsgroup

• Final exam on Thursday 12/16, 2:00-4:30
o PS6 tournament and review session M 12/13 and Tu 12/14
o Which evenings do you prefer?

• What have we covered in CS3110?
• Tools for solving difficult computational problems

o Abstraction, specification, design
o Functional programming
o Concurrency
o Reasoning about programs
o Data structures and algorithms

• My personal view of computer scientists versus computer programmers

o Note that there are 100x as many programmers
• At any time there are some existing programs
• And some programs that don’t exist but clearly could

o Example: problem set (before anyone solves it)
o Ukrainian spellchecker for Android

• Computer programmers write such programs
• This can be hard work, and well paid
• Always clear that such a program exists,

o but not necessarily trivial to write it within resource constraints
(programmer time, running time/space)

• Computer scientists expand the set of programs we know how to write

2

• Write programs whose existence is not at all clear
o Can we make a car that drives itself?
o Distinguish pictures of cats from dogs?
o Find broken bones in x-ray images?
o Create synthetic pictures that look as good as real ones?

• Sometimes we fail

o Quite often, in fact
o “If you aren’t occasionally failing, then you are working on problems

that are too easy.”
• Sometimes we discover that a problem is fundamentally hard

o It wasn’t just that the person who tried it wasn’t smart enough
• This is the topic of our final lecture

3

• Boolean-valued functions (true/false) are generally pretty easy to write.
• Consider the following question: does a function of one argument

terminate or run forever, given this input?
o halts(f,a) will be true or false depending on if f(a) halts
o Boolean-valued function

• Note that we aren’t going to write in OCaml because types get in the way
• Now consider a new Boolean-valued function safely(g)

o First we check if halts(g,g), and if so we return not(g(g))
o Otherwise we just return false
o In pseudocode (NOT in ML) we have

safely(g) = if halts(g,g) then not(g,g) else false

o Ignoring type checking you can do things like:

safely(fun(f)->f(24) != 42)

• OK, now what is the value of safely(safely) ?
• It’s the value of not(safely(safely)). Oops!

• Resolution: you can’t have a function like halts.
• In any language, no matter how smart you are.
• Determining whether or not a program halts is undecidable
• The only way you can figure out what a program does it to run it!
• Related to Cantor’s proof of more reals than integers, Goedel’s

incompleteness proof, Russell’s paradox
o All of these are “diagonalization” arguments

• This has huge real-life consequences.

o Microsoft design of plug-ins (requiring burglars to sign in)
o Virtualization
o Virus issues

4

• Computer scientists tend to informally say that all programming languages
are the same,

o i.e. anything you can do in one language you can do in another
• There is a mathematically precise way to express this

o Turing equivalence, see CS3810
o Taught by John Hopcroft, Turing-award winner

• Weaker languages can actually be better
o PDF versus postscript

• How do you tell if a problem is undecidable?
• It’s not always obvious, though there is one great (sound) heuristic

• Consider the following child’s game:

o We are given types of blocks over symbols, such as a,b,c
o Infinite set of blocks of each type
o Find a sequence of blocks so that the top symbols and the bottom

ones are the same

5

• Example 1:

a

baa

,

ab

aa

,

bba

bb

i = 1 i = 2 i = 3

• Solution: 3,2,3,1

bba

bb

ab

aa

bba

bb

a

baa

i1 = 3 i2 = 2 i3 = 3 i4 = 1

6

• Example 2:

bb

b

,

ab

ba

,

c

bc

1 2 3

• Solution: 1, any number of 2, 3

bb

b

ab

ba

ab

ba

...

ab

ba

c

bc

1 2 2 2 3

• Can we write a program to solve this? It depends!
• For a binary alphabet, it is decidable (first example)
• For an alphabet with 7 or more characters it is undecidable
• For 3 (second example) or more characters it is unknown!

• Suppose we can use no more than k blocks (including copies). Is it

decidable?
• Yes – it is finite!
• But it is actually NP-hard, so can’t do better than brute force

	Computability
	Announcements:

