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Some Search Structures 
• Sorted Arrays 

–  Advantages 
• Search in O(log n) time (binary search) 

–  Disadvantages 
• Need to know size in advance 
•  Insertion, deletion O(n) – need to shift elements 

• Lists 
–  Advantages 

• No need to know size in advance 
•  Insertion, deletion O(1) (not counting search time) 

–  Disadvantages 
• Search is O(n), even if list is sorted 



Balanced Search Trees 

• Best of both! 
– Search, insert, delete in O(log n) time 
– No need to know size in advance 

• Several flavors 
– AVL trees, 2-3 trees, red-black trees, 

skip lists, random treaps, ... 



Review – Binary Search Trees 

• Every node has a left child, a right 
child, both, or neither 

• Data elements are drawn from a totally 
ordered set 

• Every node contains one data element 
• Data elements are ordered in inorder 



A Binary Search Tree 
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Binary Search Trees 
In any subtree: 
•  all elements 

smaller than the 
element at the 
root are in the left 
subtree 

•  all elements 
larger than the 
element at the 
root are in the 
right subtree 
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Search 

To search for an element x: 
•  if tree is empty, return false 
•  if x = object at root, return true 
•  If x < object at root, search left subtree  
•  If x > object at root, search right subtree 
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Search 

type 'a tree = 
    Node of 'a * 'a tree * 'a tree 
  | Leaf 

let rec contains (t :'a tree) (x :'a) : bool = 
  match t with 
    Leaf -> false 
  | Node (y, l, r) -> 
      if x = y then true 
      else if x < y then contains l x 
      else contains r x 



Insertion 

To insert an element x: 
•  search for x – if there, just return 
• when arrive at a leaf y, make x a child of y 

–  left child if x < y 
–  right child if x > y 



Insertion 
25 

47 6 

1 20 29 80 

54 91 

48 

13 

Example: insert 15 
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Insertion 

let rec insert (x : 'a) (t : 'a tree) : 'a tree = 
  match t with 
    Leaf -> Node (x, Leaf, Leaf) 
    (* if at a leaf, put new node there *) 
  | Node (y, l, r) as t -> 
    (* recursively search for insert point *) 
      if x = y then t 
      else if x > y then Node (y, l, insert x r) 
      else (* x < y *) Node (y, insert x l, r) 



Deletion 

To delete an element x: 
•  remove x from its node – this creates a hole 
•  if the node was a leaf, just delete it 
•  find greatest y less than x in the left subtree 

(or least y greater than x in the right subtree), 
move it to x's node 

•  this creates a hole where y was – repeat 



Deletion 
To find least y greater than x: 

•  follow left children as far as possible in right subtree 
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Deletion 
To find greatest y less than x: 

•  follow right children as far as possible in left subtree 
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Deletion 
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Example: delete 25 
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• These operations take time proportional to the 
height of the tree (length of the longest path) 

•   O(n) if tree is not sufficiently balanced 
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Bad case for search, 
insertion, and 
deletion – essentially 
like searching a list 

Observation 
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Solution 
Try to keep the tree balanced (all paths 
roughly the same length) 
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 Balanced Trees 
• Size is exponential in height 
• Height = log2(size) 
• Search, insert, delete will be O(log n) 
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Creating a Balanced Tree 
Creating one from a sorted array: 

• Find the median, place that at the root 
• Recursively form the left subtree from the 

left half of the array and the right subtree 
from the right half of the array 
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Keeping the Tree Balanced 

• Insertions and deletions can put tree out 
of balance – we may have to rebalance it 

• Can we do this efficiently? 



AVL Trees 
Adelson-Velsky and Landis, 1962 

AVL Invariant: 
The difference in height between the 
left and right subtrees of any node is 
never more than one  
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An AVL Tree 

25 

47 6 

2 20 80 

54 91 

48 

13 

•  Nonexistent 
children are 
considered to 
have height  –1 

•  Note that paths 
can differ in 
length by more 
than 1 (e.g., 
paths to 2, 48) 



AVL Trees are Balanced 

The AVL invariant implies that: 
• Size is at least exponential in height 

• n ≥ ϕd, where ϕ = (1 + √5)/2 ~ 1.618, 
the golden ratio! 

• Height is at most logarithmic in size 
• d ≤ log n / log ϕ ~ 1.44 log n 



AVL Trees are Balanced 

To see that n ≥ ϕd, look at the smallest 
possible AVL trees of each height 

AVL Invariant: 
The difference in height between the left and right 
subtrees of any node is never more than one  
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AVL Trees are Balanced 
AVL Invariant: 
The difference in height between the left and right 
subtrees of any node is never more than one  

A0 A1 A2 A3 

A2 A1 

To see that n ≥ ϕd, look at the smallest 
possible AVL trees of each height 



AVL Trees are Balanced 
AVL Invariant: 
The difference in height between the left and right 
subtrees of any node is never more than one  

A0 A1 A2 A3 

A2 A1 ... 

Ad 

Ad–1 Ad–2 

To see that n ≥ ϕd, look at the smallest 
possible AVL trees of each height 



AVL Trees are Balanced 

A0 A1 A2 A3 

A2 A1 ... 

Ad 

Ad–1 Ad–2 

A0 = 1 
A1 = 2 
Ad = Ad–1 + Ad–2 + 1,   d ≥ 2 



AVL Trees are Balanced 

A0 = 1 
A1 = 2 
Ad = Ad–1 + Ad–2 + 1,   d ≥ 2 

1   2   4   7   12   20   33   54   88   ... 



AVL Trees are Balanced 

A0 = 1 
A1 = 2 
Ad = Ad–1 + Ad–2 + 1,   d ≥ 2 

1   2   4   7   12   20   33   54   88   ... 

1   1   2   3   5   8   13   21   34   55   ... 
The Fibonacci sequence 



AVL Trees are Balanced 

A0 = 1 
A1 = 2 
Ad = Ad–1 + Ad–2 + 1,   d ≥ 2 

1   2   4   7   12   20   33   54   88   ... 

1   1   2   3   5   8   13   21   34   55   ... 
Ad  =  Fd+2 – 1  =  O(ϕd) 



Rebalancing 

• Insertion and deletion can invalidate 
the AVL invariant 

• May have to rebalance 



Rebalancing 
Rotation 
•  A local rebalancing operation 
•  Preserves inorder ordering of the elements 
•  The AVL invariant can be reestablished with at most O

(log n) rotations up and down the tree 
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Example: delete 27 
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2-3 Trees 

Another balanced tree scheme 
• Data stored only at the leaves 
• Ordered left-to-right 
• All paths of the same length 
• Every non-leaf has either 2 or 3 children 
• Each internal node has smallest, largest 

element in its subtree (for searching) 



2-3 Trees 

smallest 2-3 tree of height d = 3 
2d = 8 data elements 

largest 2-3 tree of height d = 3 
3d = 27 data elements 

• number of elements satisfies 2d ≤ n ≤ 3d 
• height satisfies d ≤ log n  



Insertion in 2-3 Trees 



Insertion in 2-3 Trees 

want to insert new element here 
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Insertion in 2-3 Trees 



Insertion in 2-3 Trees 



Insertion in 2-3 Trees 



Insertion in 2-3 Trees 



Deletion in 2-3 Trees 

want to delete this element 



Deletion in 2-3 Trees 



Deletion in 2-3 Trees 

want to delete this element 



Deletion in 2-3 Trees 

If neighbor has 3 children, borrow one 



Deletion in 2-3 Trees 

If neighbor has 3 children, borrow one 



Deletion in 2-3 Trees 

If neighbor has 2 children, coalesce with neighbor 



Deletion in 2-3 Trees 

If neighbor has 2 children, coalesce with neighbor 



Deletion in 2-3 Trees 

This may cascade up the tree! 
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Deletion in 2-3 Trees 

This may cascade up the tree! 



Deletion in 2-3 Trees 

This may cascade up the tree! 



Conclusion 

Balanced search trees are good 
• Search, insert, delete in O(log n) time 
• No need to know size in advance 
• Several different versions 

–  AVL trees, 2-3 trees, red-black trees, skip 
lists, random treaps, Huffman trees, ... 

–  find out more about them in CS4820 


