

Balanced Search Trees

CS 3110 Fall 2010

Some Search Structures

- Sorted Arrays
 - Advantages
 - Search in O(log n) time (binary search)
 - Disadvantages
 - Need to know size in advance
 - Insertion, deletion O(n) need to shift elements
- Lists
 - Advantages
 - No need to know size in advance
 - Insertion, deletion O(1) (not counting search time)
 - Disadvantages
 - Search is O(n), even if list is sorted

Balanced Search Trees

- Best of both!
 - Search, insert, delete in O(log n) time
 - No need to know size in advance
- Several flavors
 - AVL trees, 2-3 trees, red-black trees, skip lists, random treaps, ...

Review – Binary Search Trees

- Every node has a *left child*, a *right child*, both, or neither
- Data elements are drawn from a totally ordered set
- Every node contains one data element
- Data elements are ordered in *inorder*

A Binary Search Tree

Binary Search Trees

In any subtree:

- all elements smaller than the element at the root are in the left subtree
- all elements larger than the element at the root are in the right subtree

Search

To search for an element x:

- if tree is empty, return false
- if x = object at root, return true
- If x < object at root, search left subtree
- If x > object at root, search right subtree

Search

```
type 'a tree =
   Node of 'a * 'a tree * 'a tree
   Leaf
let rec contains (t :'a tree) (x :'a) : bool =
   match t with
   Leaf -> false
   Node (y, 1, r) ->
        if x = y then true
        else if x < y then contains l x
        else contains r x</pre>
```

Insertion

To insert an element x:

- search for x if there, just return
- when arrive at a leaf y, make x a child of y
 - left child if x < y
 - right child if x > y

Insertion

```
let rec insert (x : 'a) (t : 'a tree) : 'a tree =
match t with
Leaf -> Node (x, Leaf, Leaf)
  (* if at a leaf, put new node there *)
  | Node (y, 1, r) as t ->
   (* recursively search for insert point *)
    if x = y then t
    else if x > y then Node (y, 1, insert x r)
    else (* x < y *) Node (y, insert x 1, r)</pre>
```

Deletion

To delete an element x:

- remove x from its node this creates a hole
- if the node was a leaf, just delete it
- find greatest y less than x in the left subtree (or least y greater than x in the right subtree), move it to x's node
- this creates a hole where y was repeat

Deletion

To find least y greater than x:

• follow left children as far as possible in right subtree

Deletion

To find greatest y less than x:

• follow right children as far as possible in left subtree

Observation

- These operations take time proportional to the height of the tree (length of the longest path)
- O(n) if tree is not sufficiently balanced

Solution

Try to keep the tree *balanced* (all paths roughly the same length)

Balanced Trees

- Size is exponential in height
- Height = $\log_2(size)$
- Search, insert, delete will be O(log n)

Creating a Balanced Tree

Creating one from a sorted array:

- Find the median, place that at the root
- Recursively form the left subtree from the left half of the array and the right subtree from the right half of the array

Keeping the Tree Balanced

- Insertions and deletions can put tree out of balance – we may have to rebalance it
- Can we do this efficiently?

AVL Trees

Adelson-Velsky and Landis, 1962

AVL Invariant:

The difference in height between the left and right subtrees of any node is never more than one

An AVL Tree

- Nonexistent children are considered to have height -1
- Note that paths can differ in length by more than 1 (e.g., paths to 2, 48)

The AVL invariant implies that:

- Size is at least exponential in height
 - $n \ge \varphi^d$, where $\varphi = (1 + \sqrt{5})/2 \sim 1.618$, the golden ratio!
- Height is at most logarithmic in size
 d ≤ log n / log φ ~ 1.44 log n

AVL Invariant:

The difference in height between the left and right subtrees of any node is never more than one

To see that $n \ge \varphi^d$, look at the *smallest* possible AVL trees of each height

AVL Invariant:

The difference in height between the left and right subtrees of any node is never more than one

To see that $n \ge \varphi^d$, look at the *smallest* possible AVL trees of each height

AVL Invariant:

The difference in height between the left and right subtrees of any node is never more than one

To see that $n \ge \varphi^d$, look at the *smallest* possible AVL trees of each height

$$\begin{array}{l} A_{0} = 1 \\ A_{1} = 2 \\ A_{d} = A_{d-1} + A_{d-2} + 1, \quad d \geq 2 \end{array}$$

$$\begin{array}{l} A_0 = 1 \\ A_1 = 2 \\ A_d = A_{d-1} + A_{d-2} + 1, \quad d \ge 2 \end{array}$$

$$\begin{array}{l} 1 \quad 2 \quad 4 \quad 7 \quad 12 \quad 20 \quad 33 \quad 54 \quad 88 \quad \dots \end{array}$$

$$\begin{array}{l} A_{0} = 1 \\ A_{1} = 2 \\ A_{d} = A_{d-1} + A_{d-2} + 1, \quad d \geq 2 \end{array}$$

$$\begin{array}{l} 1 \quad 2 \quad 4 \quad 7 \quad 12 \quad 20 \quad 33 \quad 54 \quad 88 \quad \dots \\ 1 \quad 1 \quad 2 \quad 3 \quad 5 \quad 8 \quad 13 \quad 21 \quad 34 \quad 55 \quad \dots \\ \end{array}$$

$$\begin{array}{l} The Fibonacci sequence \end{array}$$

- Insertion and deletion can invalidate the AVL invariant
- May have to rebalance

Rotation

- A local rebalancing operation
- Preserves inorder ordering of the elements
- The AVL invariant can be reestablished with at most O (log n) rotations up and down the tree

2-3 Trees

Another balanced tree scheme

- Data stored only at the leaves
- Ordered left-to-right
- All paths of the same length
- Every non-leaf has either 2 or 3 children
- Each internal node has smallest, largest element in its subtree (for searching)

smallest 2-3 tree of height d = 3 $2^d = 8$ data elements largest 2-3 tree of height d = 3 $3^d = 27$ data elements

- number of elements satisfies $2^d \le n \le 3^d$
- height satisfies $d \le \log n$

If neighbor has 3 children, borrow one

If neighbor has 3 children, borrow one

If neighbor has 2 children, coalesce with neighbor

If neighbor has 2 children, coalesce with neighbor

Conclusion

Balanced search trees are good

- Search, insert, delete in O(log n) time
- No need to know size in advance
- Several different versions
 - AVL trees, 2-3 trees, red-black trees, skip lists, random treaps, Huffman trees, ...
 - find out more about them in CS4820