Balanced
Search Trees

/f\‘\
\

CS 3110
Fall 2010

Some Search Structures

« Sorted Arrays
— Advantages
« Search in O(log n) time (binary search)

— Disadvantages
* Need to know size in advance
* Insertion, deletion O(n) — need to shift elements

e Lists

— Advantages
* No need to know size in advance
* Insertion, deletion O(1) (not counting search time)

— Disadvantages
» Search is O(n), even if list is sorted

Balanced Search Trees

* Best of both!

— Search, insert, delete in O(log n) time
— No need to know size in advance

e Several flavors

— AVL trees, 2-3 trees, red-black trees,
skip lists, random treaps, ...

Review — Binary Search Trees

* Every node has a /eft child, a right
child, both, or neither

» Data elements are drawn from a totally
ordered set

* Every node contains one data element

» Data elements are ordered in inorder

A Binary Search Tree

Binary Search Trees

In any subtree:

« all elements
smaller than the
element at the
root are in the left
subtree

» all elements
larger than the
element at the
root are in the
right subtree

Search

0 search for an element x:

* if tree is empty, return false

* if X = object at root, return true

* |[f X < object at root, search left subtree
* |If X > object at root, search right subtree

Search

type 'a tree =
Node of 'a * 'a tree * 'a tree
| Leaf

let rec contains (t :'a tree) (x :'a)
match t with
Leaf -> false
| Node (y, 1, r) ->
if x = y then true
else if x < y then contains 1 x
else contains r x

bool

Insertion

To insert an element x:
* search for x — if there, just return

* when arrive at a leaf y, make x a child of y

— leftchild if x <y
— right child if x >y

Insertion

Insertion

Insertion

Insertion

Insertion

Insertion

Insertion

let rec insert (x : 'a) (t : 'a tree) : 'a tree
match t with
Leaf -> Node (x, Leaf, Leaf)
(* if at a leaf, put new node there ¥*)
| Node (y, 1, r) as t ->
(* recursively search for insert point ¥*)
if x = y then t
else if x > y then Node (y, 1, insert x r)
else (* x < y *) Node (y, insert x 1, r)

Deletion

To delete an element x:
* remove X from its node — this creates a hole
* if the node was a leaf, just delete it
* find greatest y less than x in the left subtree
(or least y greater than x in the right subtree),
move it to x's node
* this creates a hole where y was — repeat

Deletion

To find least y greater than x:
« follow left children as far as possible in right subtree

Deletion

To find greatest y less than x:
« follow right children as far as possible in left subtree

Deletion
Example: delete 25

Deletion

Deletion

Deletion

Deletion

Deletion

Deletion

Deletion

Deletion

Deletion
Example: delete 47

Deletion

Deletion

Deletion

Deletion

Deletion

Deletion
Example: delete 29

Deletion

Deletion

Deletion

Deletion

Deletion

Deletion

Deletion

Observation

* These operations take time proportional to the
height of the tree (length of the longest path)
* O(n) if tree is not sufficiently balanced

Bad case for search,
Insertion, and
deletion — essentially
like searching a list

Solution

Try to keep the tree balanced (all paths
roughly the same length)

Balanced Trees

 Size is exponential in height
* Height = log,(size)
» Search, insert, delete will be O(log n)

Creating a Balanced Tree

Creating one from a sorted array:
* Find the median, place that at the root
« Recursively form the left subtree from the
left half of the array and the right subtree
from the right half of the array

1| 6|13

Keeping the Tree Balanced

* Insertions and deletions can put tree out
of balance — we may have to rebalance it
» Can we do this efficiently?

AVL Trees
Adelson-Velsky and Landis, 1962

AVL Invariant:

The difference in height between the

left and right subtrees of any node is
never more than one

An AVL Tree

* Nonexistent
children are
considered to
have height —1

* Note that paths
can differ in
length by more
than 1 (e.g.,
paths to 2, 48)

AVL Trees are Balanced

The AVL invariant implies that:

 Size is at least exponential in height
*n = g9 where ¢ = (1 +v5)/2 ~ 1.618,
the golden ratio!

* Height is at most logarithmic in size
d=<logn/logep~1.441logn

AVL Trees are Balanced

AVL Invariant:
The difference in height between the left and right

subtrees of any node is never more than one

To see that n = @9, look at the smallest
possible AVL trees of each height

AR

AVL Trees are Balanced

AVL Invariant:
The difference in height between the left and right

subtrees of any node is never more than one

To see that n = @9, look at the smallest
possible AVL trees of each height

Ay Ay A,

A

AVL Trees are Balanced

AVL Invariant:
The difference in height between the left and right

subtrees of any node is never more than one

To see that n = @9, look at the smallest
possible AVL trees of each height

Ay Ay A,

A

AVL Trees are Balanced

A, =1
A, =2
Ay=A, +A,+1, d=2

AVL Trees are Balanced

A, =1
A, =2
Ay=A, +A,+1, d=2

1 2 4 7 12 20 33 54 88

AVL Trees are Balanced

A, =1
A, =2
Ay=A, +A,+1, d=2

1 2 4 7 12 20 33 54 88

11 2 3 5 8 13 21 34 55

The Fibonacci sequence

AVL Trees are Balanced

A, =1
A, =2
Ag=Ag 4 tA T

1<47122033\4

1 1 2 3 5 8 13 21 34 55
Ay = Fgo—1 = O(g9)

Rebalancing

* |Insertion and deletion can invalidate
the AVL invariant
* May have to rebalance

Rebalancing

Rotation

» Alocal rebalancing operation

* Preserves inorder ordering of the elements

 The AVL invariant can be reestablished with at most O

(log n) rotations up and down the tree

Rebalancing

Example: delete 27

Rebalancing

Rebalancing

Rebalancing

Rebalancing

Rebalancing

2-3 Trees

Another balanced tree scheme
» Data stored only at the leaves
 Ordered left-to-right
* All paths of the same length
* Every non-leaf has either 2 or 3 children
« Each internal node has smallest, largest
element in its subtree (for searching)

2-3 Trees

A\

smallest 2-3 tree of heightd = 3 largest 2-3 tree of height d = 3
24 = 8 data elements 34 = 27 data elements

 number of elements satisfies 29 < n < 3¢
* height satisfies d < log n

Insertion in 2-3 Trees

b

Insertion in 2-3 Trees

want to insert new element here

Insertion in 2-3 Trees

i

Insertion in 2-3 Trees

N\
|

want to insert new element here

Insertion in 2-3 Trees

Encha

Insertion in 2-3 Trees

b O

Insertion in 2-3 Trees

b O

Insertion in 2-3 Trees

LA

Deletion in 2-3 Trees

LAN

1

want to delete this element

Deletion in 2-3 Trees

Deletion in 2-3 Trees

LAN

1

want to delete this element

Deletion in 2-3 Trees

FAN

If neighbor has 3 children, borrow one

Deletion in 2-3 Trees

XY

If neighbor has 3 children, borrow one

Deletion in 2-3 Trees

If neighbor has 2 children, coalesce with neighbor

Deletion in 2-3 Trees

If neighbor has 2 children, coalesce with neighbor

Deletion in 2-3 Trees

This may cascade up the tree!

Deletion in 2-3 Trees

This may cascade up the tree!

Deletion in 2-3 Trees

This may cascade up the tree!

Deletion in 2-3 Trees

N

This may cascade up the tree!

Conclusion

Balanced search trees are good
« Search, insert, delete in O(log n) time
* No need to know size in advance

« Several different versions
— AVL trees, 2-3 trees, red-black trees, skip
lists, random treaps, Huffman trees, ...
— find out more about them in CS4820

