

Balanced Search Trees

CS 3110
Fall 2010

Some Search Structures

- Sorted Arrays
- Advantages
- Search in O(log n) time (binary search)
- Disadvantages
- Need to know size in advance
- Insertion, deletion O(n) - need to shift elements
- Lists
- Advantages
- No need to know size in advance
- Insertion, deletion $\mathrm{O}(1)$ (not counting search time)
- Disadvantages
- Search is $O(n)$, even if list is sorted

Balanced Search Trees

- Best of both!
- Search, insert, delete in O(log n) time
- No need to know size in advance
- Several flavors
- AVL trees, 2-3 trees, red-black trees, skip lists, random treaps, ...

Review - Binary Search Trees

- Every node has a left child, a right child, both, or neither
- Data elements are drawn from a totally ordered set
- Every node contains one data element
- Data elements are ordered in inorder

A Binary Search Tree

Binary Search Trees

In any subtree:

- all elements smaller than the element at the root are in the left subtree
- all elements larger than the element at the root are in the right subtree

Search

To search for an element x :

- if tree is empty, return false
- if $x=$ object at root, return true
- If $x<$ object at root, search left subtree
- If $x>$ object at root, search right subtree

Search

Example: search for 13

Search

Search

Search

Search

Search

Search

```
type 'a tree =
    Node of 'a * 'a tree * 'a tree
    | Leaf
let rec contains (t :'a tree) (x :'a) : bool =
    match t with
    Leaf -> false
    | Node (y, l, r) ->
        if x = y then true
        else if x < y then contains l x
        else contains r x
```


Insertion

To insert an element x :

- search for x - if there, just return
- when arrive at a leaf y, make x a child of y
- left child if $x<y$
- right child if $x>y$

Insertion

Example: insert 15

Insertion

Insertion

Insertion

Insertion

Insertion

Insertion

```
let rec insert (x : 'a) (t : 'a tree) : 'a tree =
    match t with
        Leaf -> Node (x, Leaf, Leaf)
        (* if at a leaf, put new node there *)
    | Node (y, l, r) as t ->
        (* recursively search for insert point *)
        if x = y then t
        else if x > y then Node (y, l, insert x r)
        else (* x < y *) Node (y, insert x l, r)
```


Deletion

To delete an element x :

- remove x from its node - this creates a hole
- if the node was a leaf, just delete it
- find greatest y less than x in the left subtree (or least y greater than x in the right subtree), move it to x 's node
- this creates a hole where y was - repeat

Deletion

To find least y greater than x :

- follow left children as far as possible in right subtree
(25)

Deletion

To find greatest y less than x :

- follow right children as far as possible in left subtree
(25)

Deletion

Example: delete 25

Deletion

Deletion

Example: delete 47

Deletion

Deletion

Deletion

Deletion

Deletion

Deletion

Example: delete 29

Deletion

Observation

- These operations take time proportional to the height of the tree (length of the longest path)
- $O(n)$ if tree is not sufficiently balanced

Solution

Try to keep the tree balanced (all paths roughly the same length)

Balanced Trees

- Size is exponential in height
- Height $=\log _{2}$ (size)
- Search, insert, delete will be O(log n)

Creating a Balanced Tree

Creating one from a sorted array:

- Find the median, place that at the root
- Recursively form the left subtree from the left half of the array and the right subtree from the right half of the array

Keeping the Tree Balanced

- Insertions and deletions can put tree out of balance - we may have to rebalance it
- Can we do this efficiently?

AVL Trees

Adelson-Velsky and Landis, 1962

AVL Invariant:
The difference in height between the left and right subtrees of any node is never more than one

An AVL Tree

- Nonexistent children are considered to have height -1
- Note that paths can differ in length by more than 1 (e.g., paths to 2,48)

AVL Trees are Balanced

The AVL invariant implies that:

- Size is at least exponential in height
- $n \geq \varphi^{d}$, where $\varphi=(1+\sqrt{ } 5) / 2 \sim 1.618$, the golden ratio!
- Height is at most logarithmic in size
- $\mathrm{d} \leq \log \mathrm{n} / \log \varphi \sim 1.44 \log n$

AVL Trees are Balanced

AVL Invariant:

The difference in height between the left and right subtrees of any node is never more than one

To see that $\mathrm{n} \geq \varphi^{\mathrm{d}}$, look at the smallest possible AVL trees of each height

AVL Trees are Balanced

AVL Invariant:

The difference in height between the left and right subtrees of any node is never more than one

To see that $\mathrm{n} \geq \varphi^{\mathrm{d}}$, look at the smallest possible AVL trees of each height

$\stackrel{A_{0}}{A_{1}}$

AVL Trees are Balanced

AVL Invariant:

The difference in height between the left and right subtrees of any node is never more than one

To see that $\mathrm{n} \geq \varphi^{\mathrm{d}}$, look at the smallest possible AVL trees of each height

-••

AVL Trees are Balanced

$$
\begin{aligned}
& A_{0}=1 \\
& A_{1}=2 \\
& A_{d}=A_{d-1}+A_{d-2}+1, \quad d \geq 2
\end{aligned}
$$

$\stackrel{A_{0}}{\bullet}$

AVL Trees are Balanced

$$
\begin{aligned}
& A_{0}=1 \\
& A_{1}=2 \\
& A_{d}=A_{d-1}+A_{d-2}+1, \quad d \geq 2
\end{aligned}
$$

$$
\begin{array}{llllllllll}
1 & 2 & 4 & 7 & 12 & 20 & 33 & 54 & 88 & \ldots
\end{array}
$$

AVL Trees are Balanced

$A_{0}=1$
$A_{1}=2$
$A_{d}=A_{d-1}+A_{d-2}+1, \quad d \geq 2$
$\begin{array}{llllllllll}1 & 2 & 4 & 7 & 12 & 20 & 33 & 54 & 88 & \ldots\end{array}$
$\begin{array}{lllllllllll}1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & \ldots\end{array}$
The Fibonacci sequence

AVL Trees are Balanced

$$
\begin{aligned}
& A_{0}=1 \\
& A_{1}=2 \\
& A_{d}=A_{d-1}+A_{d-2}+1, \quad d \geq 2
\end{aligned}
$$

$$
1 \quad 2 \quad 4 \quad 7 \quad 12 \quad 20 \quad 33 \quad 54 \quad 88 \quad \ldots
$$

$$
\begin{array}{llllllll}
1 & 1 & 2 & 5 & 8 & 13 & 21 & 34 \\
5
\end{array}
$$

$$
A_{d}=F_{d+2}-1=O\left(\varphi^{d}\right)
$$

Rebalancing

- Insertion and deletion can invalidate the AVL invariant
- May have to rebalance

Rebalancing

Rotation

- A local rebalancing operation
- Preserves inorder ordering of the elements
- The AVL invariant can be reestablished with at most O ($\log \mathrm{n}$) rotations up and down the tree

Rebalancing

Example: delete 27

Rebalancing

Rebalancing

Rebalancing

Rebalancing

Rebalancing

2-3 Trees

Another balanced tree scheme

- Data stored only at the leaves
- Ordered left-to-right
- All paths of the same length
- Every non-leaf has either 2 or 3 children
- Each internal node has smallest, largest element in its subtree (for searching)

2-3 Trees

smallest 2-3 tree of height $d=3$ $2^{\mathrm{d}}=8$ data elements

largest 2-3 tree of height $d=3$
$3^{d}=27$ data elements

- number of elements satisfies $2^{\mathrm{d}} \leq \mathrm{n} \leq 3^{\mathrm{d}}$
- height satisfies $d \leq \log n$

Insertion in 2-3 Trees

Insertion in 2-3 Trees

want to insert new element here

Insertion in 2-3 Trees

Deletion in 2-3 Trees

want to delete this element

Deletion in 2-3 Trees

Deletion in 2-3 Trees

Deletion in 2-3 Trees

If neighbor has 3 children, borrow one

Deletion in 2-3 Trees

If neighbor has 3 children, borrow one

Deletion in 2-3 Trees

If neighbor has 2 children, coalesce with neighbor

Deletion in 2-3 Trees

If neighbor has 2 children, coalesce with neighbor

Deletion in 2-3 Trees

This may cascade up the tree!

Deletion in 2-3 Trees

This may cascade up the tree!

Deletion in 2-3 Trees

This may cascade up the tree!

Deletion in 2-3 Trees

This may cascade up the tree!

Conclusion

Balanced search trees are good

- Search, insert, delete in $\mathrm{O}(\log \mathrm{n})$ time
- No need to know size in advance
- Several different versions
- AVL trees, 2-3 trees, red-black trees, skip lists, random treaps, Huffman trees, ...
- find out more about them in CS4820

