
 Balanced
Search Trees

CS 3110
Fall 2010

Some Search Structures
• Sorted Arrays

–  Advantages
• Search in O(log n) time (binary search)

–  Disadvantages
• Need to know size in advance
•  Insertion, deletion O(n) – need to shift elements

• Lists
–  Advantages

• No need to know size in advance
•  Insertion, deletion O(1) (not counting search time)

–  Disadvantages
• Search is O(n), even if list is sorted

Balanced Search Trees

• Best of both!
– Search, insert, delete in O(log n) time
– No need to know size in advance

• Several flavors
– AVL trees, 2-3 trees, red-black trees,

skip lists, random treaps, ...

Review – Binary Search Trees

• Every node has a left child, a right
child, both, or neither

• Data elements are drawn from a totally
ordered set

• Every node contains one data element
• Data elements are ordered in inorder

A Binary Search Tree
25

47 6

1 20 29 80

54 91

48

13

Binary Search Trees
In any subtree:
•  all elements

smaller than the
element at the
root are in the left
subtree

•  all elements
larger than the
element at the
root are in the
right subtree

25

47 6

1 20 29 80

54 91

48

13

Search

To search for an element x:
•  if tree is empty, return false
•  if x = object at root, return true
•  If x < object at root, search left subtree
•  If x > object at root, search right subtree

Search
25

47 6

1 20 29 80

54 91

48

13

Example: search for 13

25

Search

47 6

1 20 29 80

54 91

48

13

13 ?

6

Search
25

47

1 20 29 80

54 91

48

13

13 ?

20

Search
25

47 6

1 29 80

54 91

48

13

13 ?

13

Search
25

47 6

1 20 29 80

54 91

48

13 ?

13

Search
25

47 6

1 20 29 80

54 91

48

Search

type 'a tree =
 Node of 'a * 'a tree * 'a tree
 | Leaf

let rec contains (t :'a tree) (x :'a) : bool =
 match t with
 Leaf -> false
 | Node (y, l, r) ->
 if x = y then true
 else if x < y then contains l x
 else contains r x

Insertion

To insert an element x:
•  search for x – if there, just return
• when arrive at a leaf y, make x a child of y

–  left child if x < y
–  right child if x > y

Insertion
25

47 6

1 20 29 80

54 91

48

13

Example: insert 15

25

Insertion

47 6

1 20 29 80

54 91

48

13

15 ?

6

Insertion
25

47

1 20 29 80

54 91

48

13

15 ?

20

Insertion
25

47 6

1 29 80

54 91

48

13

15 ?

13

Insertion
25

47 6

1 20 29 80

54 91

48

15 ?

15

13

Insertion
25

47 6

1 20 29 80

54 91

48

Insertion

let rec insert (x : 'a) (t : 'a tree) : 'a tree =
 match t with
 Leaf -> Node (x, Leaf, Leaf)
 (* if at a leaf, put new node there *)
 | Node (y, l, r) as t ->
 (* recursively search for insert point *)
 if x = y then t
 else if x > y then Node (y, l, insert x r)
 else (* x < y *) Node (y, insert x l, r)

Deletion

To delete an element x:
•  remove x from its node – this creates a hole
•  if the node was a leaf, just delete it
•  find greatest y less than x in the left subtree

(or least y greater than x in the right subtree),
move it to x's node

•  this creates a hole where y was – repeat

Deletion
To find least y greater than x:

•  follow left children as far as possible in right subtree

19

25

47 6

15 42

33

31

27

22

Deletion
To find greatest y less than x:

•  follow right children as far as possible in left subtree

19

25

47 6

15 42

33

31

27

22

Deletion
25

47 6

1 20 29 80

54 91

48

13

Example: delete 25

25

Deletion

47 6

1 20 29 80

54 91

48

13

Deletion

47 6

1 20 29 80

54 91

48

13

Deletion

47 6

1 20 29 80

54 91

48

13

Deletion

47 6

1 20 29 80

54 91

48

13

Deletion

47 6

1

20

29 80

54 91

48

13

Deletion

47 6

1

20

29 80

54 91

48

13

Deletion

47 6

1

20

29 80

54 91

48

13

Deletion

47 6

1

20

29 80

54 91

48

13

Deletion

47 6

1

20

29 80

54 91

48

13

Example: delete 47

Deletion

47 6

1

20

29 80

54 91

48

13

Deletion

6

1

20

29 80

54 91

48

13

Deletion

6

1

20

29 80

54 91

48

13

Deletion

6

1

20

29

80

54 91

48

13

Deletion

6

1

20

29

80

54 91

48

13

Deletion

6

1

20

29

80

54 91

48

13

Example: delete 29

Deletion

6

1

20

29

80

54 91

48

13

Deletion

6

1

20

80

54 91

48

13

Deletion

6

1

20

80

54 91

48

13

Deletion

6

1

20

80

54 91

48

13

Deletion

6

1

20

80

54 91

48

13

Deletion

6

1

20

80

54 91

48

13

Deletion

6

1

20

80

54 91

48

13

• These operations take time proportional to the
height of the tree (length of the longest path)

•  O(n) if tree is not sufficiently balanced

20

80

91

48

54
Bad case for search,
insertion, and
deletion – essentially
like searching a list

Observation

54

Solution
Try to keep the tree balanced (all paths
roughly the same length)

6

1

20

80 48

91

13

 Balanced Trees
• Size is exponential in height
• Height = log2(size)
• Search, insert, delete will be O(log n)

54 6

1

20

80 48

91

13

Creating a Balanced Tree
Creating one from a sorted array:

• Find the median, place that at the root
• Recursively form the left subtree from the

left half of the array and the right subtree
from the right half of the array

54 6

1

20

80 48 13

1 6 13 20 48 54 80

Keeping the Tree Balanced

• Insertions and deletions can put tree out
of balance – we may have to rebalance it

• Can we do this efficiently?

AVL Trees
Adelson-Velsky and Landis, 1962

AVL Invariant:
The difference in height between the
left and right subtrees of any node is
never more than one

27

29

An AVL Tree

25

47 6

2 20 80

54 91

48

13

•  Nonexistent
children are
considered to
have height –1

•  Note that paths
can differ in
length by more
than 1 (e.g.,
paths to 2, 48)

AVL Trees are Balanced

The AVL invariant implies that:
• Size is at least exponential in height

• n ≥ ϕd, where ϕ = (1 + √5)/2 ~ 1.618,
the golden ratio!

• Height is at most logarithmic in size
• d ≤ log n / log ϕ ~ 1.44 log n

AVL Trees are Balanced

To see that n ≥ ϕd, look at the smallest
possible AVL trees of each height

AVL Invariant:
The difference in height between the left and right
subtrees of any node is never more than one

A0 A1 A2 A3

AVL Trees are Balanced
AVL Invariant:
The difference in height between the left and right
subtrees of any node is never more than one

A0 A1 A2 A3

A2 A1

To see that n ≥ ϕd, look at the smallest
possible AVL trees of each height

AVL Trees are Balanced
AVL Invariant:
The difference in height between the left and right
subtrees of any node is never more than one

A0 A1 A2 A3

A2 A1 ...

Ad

Ad–1 Ad–2

To see that n ≥ ϕd, look at the smallest
possible AVL trees of each height

AVL Trees are Balanced

A0 A1 A2 A3

A2 A1 ...

Ad

Ad–1 Ad–2

A0 = 1
A1 = 2
Ad = Ad–1 + Ad–2 + 1, d ≥ 2

AVL Trees are Balanced

A0 = 1
A1 = 2
Ad = Ad–1 + Ad–2 + 1, d ≥ 2

1 2 4 7 12 20 33 54 88 ...

AVL Trees are Balanced

A0 = 1
A1 = 2
Ad = Ad–1 + Ad–2 + 1, d ≥ 2

1 2 4 7 12 20 33 54 88 ...

1 1 2 3 5 8 13 21 34 55 ...
The Fibonacci sequence

AVL Trees are Balanced

A0 = 1
A1 = 2
Ad = Ad–1 + Ad–2 + 1, d ≥ 2

1 2 4 7 12 20 33 54 88 ...

1 1 2 3 5 8 13 21 34 55 ...
Ad = Fd+2 – 1 = O(ϕd)

Rebalancing

• Insertion and deletion can invalidate
the AVL invariant

• May have to rebalance

Rebalancing
Rotation
•  A local rebalancing operation
•  Preserves inorder ordering of the elements
•  The AVL invariant can be reestablished with at most O

(log n) rotations up and down the tree

v

u w

x

y x

y w

v

u
rotate
⇔

A B
C

B C
A

Rebalancing

27

29

25

47 6

2 20 80

54 91

48

13

Example: delete 27

Rebalancing

29

25

47 6

2 20 80

54 91

48

13

80

54 91

48

Rebalancing

29

25

47 6

2 20

13

54

48 80

91

Rebalancing

29

25

47 6

2 20

13

54

48 80

91

29

47

Rebalancing

25

6

2 20

13

80

48 91

47

54

Rebalancing

25

6

2 20

13 29

2-3 Trees

Another balanced tree scheme
• Data stored only at the leaves
• Ordered left-to-right
• All paths of the same length
• Every non-leaf has either 2 or 3 children
• Each internal node has smallest, largest

element in its subtree (for searching)

2-3 Trees

smallest 2-3 tree of height d = 3
2d = 8 data elements

largest 2-3 tree of height d = 3
3d = 27 data elements

• number of elements satisfies 2d ≤ n ≤ 3d
• height satisfies d ≤ log n

Insertion in 2-3 Trees

Insertion in 2-3 Trees

want to insert new element here

Insertion in 2-3 Trees

Insertion in 2-3 Trees

want to insert new element here

Insertion in 2-3 Trees

Insertion in 2-3 Trees

Insertion in 2-3 Trees

Insertion in 2-3 Trees

Deletion in 2-3 Trees

want to delete this element

Deletion in 2-3 Trees

Deletion in 2-3 Trees

want to delete this element

Deletion in 2-3 Trees

If neighbor has 3 children, borrow one

Deletion in 2-3 Trees

If neighbor has 3 children, borrow one

Deletion in 2-3 Trees

If neighbor has 2 children, coalesce with neighbor

Deletion in 2-3 Trees

If neighbor has 2 children, coalesce with neighbor

Deletion in 2-3 Trees

This may cascade up the tree!

Deletion in 2-3 Trees

This may cascade up the tree!

Deletion in 2-3 Trees

This may cascade up the tree!

Deletion in 2-3 Trees

This may cascade up the tree!

Conclusion

Balanced search trees are good
• Search, insert, delete in O(log n) time
• No need to know size in advance
• Several different versions

–  AVL trees, 2-3 trees, red-black trees, skip
lists, random treaps, Huffman trees, ...

–  find out more about them in CS4820

