
CS 3110 Problem Set 6: Steam Fortress

Assigned: November 16, 2010 Final submission due: December 2, 2010, 11:59 PM (no extensions)

1 Introduction

In this assignment, you will develop a game called Steam Fortress, which involves two teams fighting for control of
an area using units with a variety of weapons and ability. Each team will be run as a separate process, communicating
through channels with a game server that executes actions and enforces the rules.

You will implement the mechanics for this game in OCaml, as well as the code for a team to play the game. We
have provided you with some graphical support that you can use to display the game. Source code for getting started
on this project is available in CMS.

There are few constraints on how you implement this project. This does not mean you can abandon what you have
learned about abstraction, style and modularity; rather, this is an opportunity to demonstrate all three in the creation
of elegant code.

On TBA, after the problem set is due, there will be a Steam Fortress tournament which you are encouraged to
submit your team programs to. There will be lots of free food, and the chance to watch your team perform live. The
winner gets bragging rights and has their name posted on the 312/3110 Tournament hall of fame.

1.1 Reading this document

This writeup refers to a variety of constants, which are all defined in the file constants.ml. Whenever a con-
stant is mentioned, it’s name is mentioned in parantheses afterwards. For example, you may see a constant like
51 (cBOARD LENGTH). This means that the name of the constant as defined in constants.ml is cBOARD LENGTH, and
its value is 51. You should write OCaml code using the symbolic names (e.g., cBOARD LENGTH) instead of just the
current value, because we may tweak the values of the constants to improve gameplay.

The types referenced in this document that are not default in OCaml are defined in definitions.ml.

1.2 Updates to Problem Set

Any updates other than minor fixes will be recorded here.

1

http://www.cs.cornell.edu/andru/cs312/tournaments.html

1.3 Point Breakdown

• Game – 50 pts

• Team – 20 pts

• Documentation and design – 10 pts

• Written Problem – 20 pts

2 Game Rules

Steam Fortress is a two-player game in which each player controls a team of units. The units fight for a sequence
of control points on a rectangular board, with the goal of seizing control of the entire board. The two teams will be
referred to as the red team and the blue team.

The details of how units communicate with the game server are contained in Section 3. You may wish to review
this section again after having read and absorbed the information on communication.

Information on the structure of the code we have provided as a framework for implementing the rules described in
this section can be found in Section 6.

Steam Fortress is played on a rectangular board of length 51 (cBOARD LENGTH) squares and width
25 (cBOARD HEIGHT) squares. The board is centered at (0, 0). As such, a coordinate (x, y) is on the board if |x| ≤ 25
and |y| ≤ 12. Only integer-valued coordinates are valid. Moving to the east increases the x-coordinate, and moving
to the north increases the y-coordinate.

Each square on the board is designated as high ground, low ground, or a ramp. This is referred to as the elevation
of the square. The elevation of a square has an effect on both movement and targeting of abilities; for more details,
see Sections 2.5 and 2.10.

2.1 Control Points

Five squares on the board are marked as control points, and each is assigned a number from 0 to 4. Each control point
has a state indicating whether it is controlled by the red team, controlled by the blue team, or neutral.

The red team begins the game controlling points 0 and 1, while the blue team begins controlling points 3 and 4.
Point 2 begins neutral. Game maps will be structured so that control points 0 and 1 have negative x coordinates, control
point 2 has x-coordinate of 0, and control points 3 and 4 have positive x coordinates, thus creating a “red side” and
a “blue side” for the board. The “most advanced control point” controlled by a team refers to the highest-numbered
control point red controls or the lowest-numbered control point blue controls.

Control points can be “captured” by keeping units nearby for long enough. A point changes control by one step
the red direction (i.e., from blue-controlled to neutral or neutral to red-controlled) under the following conditions:

• Point n is currently neutral or controlled by blue

• All points numbered less than n are controlled by red

• The red team controls a majority of the units within 1 (cPOINT CAPTURE RADIUS) squares of point n (i.e., in
the nine squares surrounding the control point) for 5000 (cPOINT CAPTURE TIME) milliseconds

Similarily, a point changes control by one step in the blue direction (i.e., from red-controlled to neutral, or from
neutral to blue-controlled) under the equivalent conditions:

• Point n is currently neutral or controlled by red

• All points numbered greater than n are controlled by blue

• The blue team controls a majority of the units within 1 (cPOINT CAPTURE RADIUS) squares of point n (i.e., in
the nine squares surrounding the control point) for 5000 (cPOINT CAPTURE TIME) milliseconds

Destroyed units will respawn at the highest-numbered controlled point for red, and the lowest-numbered controlled
point for blue (see Section 2.7).

2

2.2 Scoring and Winning

A team wins the game immediately when it controls all five control points.
If no team has won after the time limit of 300000(cTIME LIMIT) milliseconds has been reached, the team control-

ling more control points wins. If both teams control an equal number of control points, the game is a draw.

2.3 Units

Each team controls up to 5 (cUNITS PER TEAM) units, each of which is one of three classes, and directs them to
perform actions by sending appropriate messages to the server (see Section 3 for more details). Each unit on a team
has an integer id, different from the id of any other unit in the game.

A unit may be either living or destroyed. Living units have a value for their health, a position on the board, and a
direction they are facing.

A unit is destroyed when its health drops below zero (see Section 2.6). A unit that is destroyed is removed from
the board and cannot perform most actions (see Section 3.4). A unit may be recreated (possibly changing its class) by
respawning (see Section 2.7).

2.4 Initial Positioning

The initial units for a team are placed at and adjacent to control point 1 (for the red team) or control point 3 (for the
blue team). The first unit created is placed on the same square as the control point; the remaining four units are placed
aribtrarily on the four adjacent squares.

2.5 Movement and Turning

As a result of commands issued by the team that controls it, a unit can attempt to move.
When a unit attempts to move, the attempt is either to move forward, in the direction the unit is facing, or to

“strafe” left or right. In either case, whether the move suceeds depends on the contents on the new square, and the
elevation of both the old and new square.

A unit that tries to move from high ground to low ground or vice versa fails and remains where they are, as does a
unit that tries to move into a square occupied by another unit. Movement that would go off the edge of the board also
fails.

In other cases, the movement is successful, and the unit is immediately removed from its current square and placed
in the new square. So a move is successful if both squares share the same elvation, or if either square is a ramp. Note
that this means that you can effectively “go up” ramps from any direction (think of them as steam jets, if that helps).

The unit is then unable to move or turn again for an amount of time equal to 20 (cMOVE DELAY SCALE) times the
unit’s speed. The speeds for the the classes of units are 19 (cSPEED MEDIC) for medics, 17 (cSPEED PYRO) for pyros,
and 20 (cSPEED SOLDIER) for soldiers. (A low speed is better than a high speed).

Similarly, after turning, a unit is unable to move or turn again for an amount of time equal to 5 (cTURN DELAY SCALE)
times the unit’s speed.

2.6 Health

All units have a health value, which represents how much damage they can take before they die. Units start with the
maximum health equal to 1000 (cHEALTH MEDIC) for medics, 1000 (cHEALTH PYRO) for pyros, and 1000 (cHEALTH SOLDIER)
for soldiers. Various abilities increase or decrease the health of affected units. A unit’s health cannot go above the
initial health for its class; if an ability would cause it to do so, the unit’s health is simply set to the proper initial health
value.

If a unit’s health becomes zero or below, the unit is destroyed and must respawn. A destroyed unit is removed from
the board, and all actions it attempts fail.

3

2.7 Respawning

A team may recreate destroyed units by sending a respawn message. After such a message has been received and
10000 (cRESPAWN TIME) milliseconds have passed since the unit was destroyed, a new unit of the appropriate class is
created at the closest free square to the most advanced control point controlled by that unit’s team (see Section 2.1).
The recreated unit keeps the same id as the destroyed unit.

If the team controls no control points, the unit is created at the closest free square to (−(cBOARD LENGTH−1)/2, 0)
for red, or ((cBOARD LENGTH−1)/2, 0) for blue (i.e., the closest free square to the middle of the appropriate edge of
the board).

Respawned red units should face east. Respawned blue units should face west.

2.8 Ability Overview

As a result of commands issued by the team that controls it, a unit can use various special abilities, in addition to
performing a variety of other actions (see Section 3.4 for details on the other actions).

Each unit has multiple abilities that it can use, which either assist its team or damage the opposing teams. What
abilities are available to a unit is determined by whether it is a Medic, Pyro, or Soldier. After using an ability, a unit
is unable to use other abilities for an amount of time (the “delay”) dependent on what ability was used. Abilities also
have a “cooldown”, which is a length of time during which other abilities may be used normally, but the ability on
cooldown may not be used.

All three classes have two abilities, one labeled “primary” and the other labeled “secondary”, to enable us to simply
refer to the primary or secondary ability of the unit.

2.8.1 Medic Abilities

• Medigun (primary) – The medigun restores the health of a friendly target at short range.

• Steam Pistol (secondary) – The steam pistol deals a small amount of damage to a target at medium range by
hitting them with a dense packet of steam.

2.8.2 Pyro Abilities

• Steamthrower (primary) – The steamthrower deals a large amount of damage to all enemy units within a medium
range cone by blasting them with scalding steam.

• Steam Axe (secondary) – The steam axe deals a great deal of damage to enemies in front of the Pyro by hitting
them with an axe made of steam.

2.8.3 Soldier Abilities

• Steam Rifle (primary) – The rifle deals moderate damage to an enemy at medium to long range by hitting them
with a precision burst of steam.

• Steam Rocket (secondary) – The steam rocket deals good amount of damage to all units within a circular burst
at long range by shooting exploding steam.

2.9 Ability Details

The following table presents the details of the abilities in Steam Fortress. Delay is the amount of time (in milliseconds)
afterwards in which no abilities may be used. Cooldown is the amount of time (in milliseconds) afterwards in which
that particular ability cannot be used. The values for ability delay, cooldown, damage, and range are defined in
constants.ml as cMEDIGUN DELAY, cMEDIGUN COOLDOWN, etc.

4

Ability Delay Cooldown Damage Targeting Range
Medigun 400 0 -125 Square 3 Only affects allies, heals
Steam Pistol 400 0 50 Square 5
Steamthrower 400 0 125 Cone 3
Steam Axe 400 0 250 Melee -
Steam Rifle 400 0 100 Square 7
Steam Rocket 400 10000 200 Square 8 Deals 200 extra damage to the nine squares

within one square of the point of impact (in-
cluding the square hit by the normal damage)

2.10 Ability Targeting and Range

2.10.1 Square Targeting

Most abilities target a square. Abilities that target a square follow a path from the unit using the ability to the targetted
square, and may hit other units or obstacles in that path before reaching the targetted square. See the ability details
above for which abilities target a square.

Shots are modeled as projectiles taking a straight-line path, starting from the center of the unit’s square and ending
at the center of the targeted square. The squares that the shot goes through on its path is determined by Bresenham’s
Line Algorithm, a description of which can be found at Wikipedia.

All abilities that target a square have a limited range. If an ability is given a target square farther from the unit’s
square (in Euclidean distance) than the range of the ability, the ability goes a distance up to its range in the direction
of the target square, then stops. Note that the range of an ability may be affected by the elevation of the unit using the
ability and the targetting square, as outlined below. When the projectile reaches the target square, it stops and affects
any unit at that position.

Other units or changes in elevation along the path a projectile takes may cause the projectile to hit an intervening
object and stop, depending on the elevation of the target square and the elevation the shot was fired from. For all
purposes related to targeting by square and projectile pathing, ramps are treated as high ground. Given that, there are
four cases for what happens to objects along the path of the projectile:

• Unit low, target low: A unit on low ground on the path to the target is hit by the projectile. A square of high
ground on the path to the target causes the projectile to stop on the square before.

• Unit low, target high: A unit on high ground on the path to the target is hit by the projectile. The range of the
projectile is modified by -1 (cLOW RANGE BONUS).

• Unit high, target low: A unit on high ground on the path to the target is hit by the projectile. The range of the
projectile is modified by 1 (cHIGH RANGE BONUS).

• Unit high, target high: A unit on high ground on the path to the target is hit by the projectile.

Note that the Soldier’s rocket uses square targeting, but also deals damage to units in squares adjacent to the square
it stops at. It does not matter what elevation those squares are at.

2.10.2 Self Targeting

Units with abilities that use square targeting cannot target their own square. A unit that fires a rocket can still be
affected by the extra damage the rocket deals to units adjacent to the rocket’s point of impact.

2.10.3 Cone Targeting

The Pyro’s steamthrower hits everything in a cone in front of the Pyro. The cone affects all units within
3 (cTHROWER RANGE) squares of the Pyro (using Euclidean distance) in a 90 degree arc in the direction the Pyro is
facing, emanating from the Pyro. If the Pyro is on a ramp, units at all elevations are affected. Otherwise, only units
at the same elevation as the Pyro and units on ramps are affected. The steamthrower does not affect the Pyro’s own
square.

5

http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm

2.10.4 Melee Targeting

The Pyro’s steam axe hits only the squares immediately to the front, front left, and front right of the Pyro (hitting three
squares total). If the Pyro is on a ramp, units at all elevations are affected. Otherwise, only units at the same elevation
as the Pyro and units on ramps are affected.

3 Communication

3.1 Client-Server Framework

Steam Fortress makes use of a client-server framework. Under this framework, the game server is responsible for
keeping track of the game state, applying the game rules, and so on. Clients (i.e., teams) are run as an entirely separate
process and can keep track of whatever information they want, but need to send messages to the server to perform
game actions or receive information.

Teams communicate with the game server by sending information over channels. The protocol for messages is
defined by the type command in definitions.ml.

There are three types of messages defined in the protocol:

• control messages, which deal with starting and ending the game

• action messages, which always come with an id and cause units to perform various actions

• result messages, which always come with an id and return information requested by an action

See the sections below for details on the three types of messages.

3.2 Communication as a client

When your team first starts, it should open a connection to the server using the included Connection module, and send
a GameRequest message. The server will then respond with a list of unit ids. Each Action message sent by a unit must
include this id to uniquely identify the given unit. Once your main team thread has received this list, for all but one
of these ids, a new thread should be spawned using Thread.create, each of which will be responsible for controlling
a different unit on your team. Then, your main team thread should take the unassigned id, and begin controlling that
unit. Each thread must be responsible for controlling a single unit, however units may communicate using shared data
structures.

Before the game can start, each unit must open their own connection to the server using the Connection module,
and send a Respawn message, providing the class that units wishes to spawn as. Once the server has received such a
request from each unit, then it will send a GameStarted message to every unit that is still connected (however, it isn’t
guaranteed that each unit will always receive this message, as the connection could close unexpectedly). After the
game has started, each unit interacts with the game world through its connection to the server.

3.3 Control Messages

Control messages are exchanged between the team client and the server to manage the beginning and end of the game.

3.3.1 Control Quick Reference

GameRequest Request to start a game.
Units Response to GameRequest, provides list of unit ids to use.
GameStart Informs the client that the game has started.
GameEnd Informs the client that the game has ended and whether the client’s team won.

6

3.4 Action Messages

Action messages are sent by the team client to the server, and tell the server to have a particular unit perform the given
action. The possible actions are defined in definitions.ml as the action type. All action messages come with an
id indicating which unit is attempting the action.

For some actions, the unit performing the action is unable to perform certain other actions until a certain amount
of time has past. In particular, after moving or turning a unit cannot move or turn again for some time; after using any
ability a unit cannot use any ability for some time; and after using some specific abilities, a unit cannot use that ability
again for some time.

Note that the effects and delay for certain actions are dependent on the type of the unit performing the action.

3.4.1 Action Quick Reference

Move Move one square forward, left, or right.
Turn Turns to the left or right.
PrimaryAbility Uses the units primary ability.
SecondaryAbility Uses the units secondary ability.
Scan Returns a list of all units within a certain range.
Inspect Returns the elevation, unit data, and control point data of a square.
MyStatus Returns the position, health, and facing direction of the unit.
GameStatus Returns the remaining time and a list of control points.
Respawn Has a destroyed unit respawn.
Talk Outputs a string to the chat area.

3.4.2 Action Specification

The following table describes the effects of the possible actions. There are some general cases in which things work
differently, as noted here:

• If a unit is destroyed, the move, turn, and ability actions automatically return Failed. Additionally, MyStatus
returns a health of zero (and arbitrary values for the other data).

• If a unit is not destroyed, the Respawn action automatically returns Failed.

• If invalid arguments are provided for any action (e.g., off-board positions for the square-targeting abilities or
inspect), it should return Failed. A unit targeting its own square with a square-targeting ability counts as an
invalid argument.

• If the action being performed is too soon after an action that prevents it from being used for a time, it should
return Failed.

• If an action, move, or turn returns Failed, no delay should be applied.

7

Command Args Delay Returns
Move hand option ho Speed * 20 Success or Failed, as

appropriate
If ho is None, the unit moves
one square straight ahead. If ho
is Some(h), the unit moves side-
ways one square according to h.
Returns Failed if for any reason
the unit remains in its original
square at the end of handling the
action

Turn hand h Speed * 5 Success or Failed, as
appropriate

Turns a unit 90 degrees in the
direction h indicates. Returns
failed if for any reason the unit
remains facing the original direc-
tion at the end of handling the ac-
tion

PrimaryAbility position p Depends Success or Failed, as
appropriate

Performs the unit’s primary abil-
ity; see Section 2.8 for details.
Returns Failed only in the case of
invalid arguments or the unit still
being delayed

SecondaryAbility position p Depends Success or Failed, as
appropriate

Performs the unit’s secondary
ability; see Section 2.8 for de-
tails. Returns Failed only in the
case of invalid arguments or the
unit still being delayed

Scan int n None ScanData(l) where l is a list with one class

* health * position *

bool pair for each unit within
n squares (using Euclidean
distance), where the boolean
value is true for allies and false
for enemies

Inspect position p None InspectData(e, uo, no, bo)where e is a the elevation at p,
uo is an option that contains the
class of the unit at p, its current
health, and a bool that is true if it
is an ally, no is an int option that
contains the number of the con-
trol point at p, and bo is a bool
option that is None if there is no
control point or the control point
is neutral, true if the unit’s team
controls it, and false otherwise

MyStatus None None MyData(p, hp, d) where p, d, hp are the position,
current health, and facing direc-
tion of the unit, respectively

GameStatus None None GameData(t, l) Where t is the remaining time in
milliseconds and l is a list with
one position * int * bool

option tuple for each control
point, where the bool option is
None if the control point is neu-
tral, true if the unit’s team con-
trols it, and false otherwise

Respawn unitClass c None Success if the unit was
recreated as class c,
Failed otherwise

See Section 2.7 for details on
respawning, and Section 3.1 for
its use at the start of the game

Talk string s None Success Outputs the string s to the chat
area

8

3.5 Result Messages

Result messages are sent by the server to the team client in response to action messages. The possible results are
defined in definitions.ml as the result type. All result messages come with an id indicating which unit is getting
the action.

Every action message is responded to with some result message. Most actions simply get back a result of either
Success or Failed, but actions dealing with information receive the requested data as the result. Further details are
contained in the action specification above, including when to return the various result messages and what data to
include.

3.5.1 Result Quick Reference

Success The action was successful.
Failed The action failed.
ScanData Result of a Scan action.
InspectData Result of an Inspect action.
MyData Result of a MyStatus action.
GameData Result of a GameStatus action.

4 Maps

Games of Steam Fortress may be played on a variety of maps. Maps are stored in text files, and the server loads a map
file at the start to use for the current game by first using the function Game.loadBoard to parse the map file into a 2D
character array, and then passing that to Game.initGame.

In a map file, each square is represented by a character, and the map as a whole represented as 25 (cBOARD HEIGHT)
lines of 51 (cBOARD LENGTH) characters each. A map file is invalid if there are duplicate control points of the same
number, less than five control points, not enough lines or characters, or unrecognized characters.

The following characters have a recognized meaning in map files:
Character Meaning
l Low ground
r A ramp
h High ground
0-4 Control point of the given number on low ground
5-9 Control point of the given number minus five on high ground

Maps are expected to satisfy the following constraints:

• The left and right halves of the map are symmetrical

• Lower-numbered control points have lesser x coordinate than higher-numbered control points

• Control points 0 and 1 have negative x coordinate

• Control point 2 has x-coordinate 0

• Control points 3 and 4 have positive x coordinate

• Any control point is reachable by a unit starting at any other control point

• A unit standing on the control point can successfully move in any direction (assuming no other unit is in the
way)

These properties give maps a consistent baseline structure while still allowing for variety.

9

5 GUI

5.1 GUI Client

In order to view the game, you will have to set up a GUI client program. The client has been coded for you, and is
located in the client directory. The game server is responsible for sending graphical update messages to the GUI,
as described below. Importantly, the game server will try and connect to the GUI and exit if no client is found after a
certain period of time, so be sure to run a client when you run your server.

5.2 Building the GUI Client

To build the GUI client, run either buildClientWin.bat or buildClientUnix.sh depending on your operating
system. The GUI client uses SDL, a cross-platform two-dimensional graphics library, in order to present the graphics
of the game. In order to run the game, you will have to have the SDL dlls installed on your machine. We have provided
the development libraries and precompiled the c stub files for you, so as long as the SDL runtime library is installed
on your machine, you will be able to view the graphics. More information about SDL, as well as a download link, can
be found at http:///www.libsdl.org. Once you have built the GUI client, you can run the program client.exe port,
where port is the port on which the GUI should listen for graphical updates.

5.3 Sending messages to the GUI

We have provided a simple module called Netgraphics with functions to send graphical updates. The functions are
specified in netgraphics.ml. Note that the init function is called by the Server module, and sendUpdates is called
reguarly by the Server module.

5.4 Graphics Commands

Arguments Meaning
InitGraphics - Tell the GUI client to initialize the graphics
DisplayString color * string

Display a string to the GUI as said by a team
SetElevation position * elevation Set the elevation of a position in the GUI
SpawnUnit id * color * position

* direction * health

* unitClass

Display a new unit at a position with the given
properties in the GUI

UpdateUnit id * position *

direction * health

Update the propeties of a unit in the GUI

RemoveUnit id Remove a unit in the GUI
AddControlPoint int * position *

color option

Display a new control point in the GUI

UpdateControlPoint int * color option Update who controls a control point in the GUI
GameOver color option Tell the GUI the game is over and the given team

won

6 Provided source code

Many files are provided for this assignment. Most of them you will not need to edit at all. In fact, you should only edit
and/or create new files in the game and team directories (plus any edits you need to make to the compilation scripts).
The files are split between two zips on CMS: ps6.zip, which contains the code for the game server and team, and
gui.zip, which contains the code for the GUI client. Here is a list of all the files included in the release and their
contents.

10

http://www.libsdl.org

build*.bat Build files for the game server, teams, and GUI client (see Section 7)
game/constants.ml Definitions of game constants
game/definitions.ml Definitions of game datatypes
game/game.mli Signature file for handling actions, time, rules, and the game state
game/game.ml Stub file for actions, rules, and time
game/state.mli Partial signature for the game state
game/state.ml Stub file for the game state
game/util.mli Signature file for utility functions
game/util.ml Implementation of utility functions
game/netgraphics.mli Signature file for sending updates to the GUI client
game/netgraphics.ml Implementation of sending updates to the GUI
game/server.ml Starts the game server and deals with communication
team/connection.mli Signature file for connection helper module
team/connection.ml Implementation of connection helper module
team/team.ml Sample team that demonstrates how to start a game and send actions
client/* Files for the GUI client (see Section 5)
client/graphics.ml Implementation of graphics module, based on SDL library
client/client.mli Signature file for GUI client module
client/client.ml Implementation of GUI client module
boards/* Various sample boards, from the simplistic to the complex (see Sec-

tion 4)
data/* Graphics files for the GUI

6.1 Code Structure

To understand how to implement the game, you must first understand how the code we have provided you operates.
The crucial aspect to understand is the relation between the Server module and the Game module. The server module
deals primarily with receiving connections from the teams, and calls the Game module for all issues related to the
game rules. You do not need to modify the Server module, graphics commands, or GUI client. Your modifications and
additions will take place in the Game module, State module, and any other modules you choose to add.

6.2 Server

At a high level, server.ml does the following things:

1. Calls Netgraphics.init

2. Calls Game.loadBoard

3. Calls Game.initGame with the result of Game.loadBoard

4. Waits until two teams have requested a game and all units have submitted a desired class

5. Calls Game.initTeam once for each team

6. Calls Game.startGame and sends GameStart messages to all units

7. Spawns a thread that regularly calls Game.handleTime with the current time

8. Enters a loop that catches messages from the teams, spawning a thread that calls handleAction for each action
message it receives

You will need to think carefully about how to structure your design of the game and your implementation of these
functions to meet the Server module’s expectations. Note in particular that the way Server spawns a different thread
for handling each action creates concurrency issues for the Game module (and that the code we have provided you
does nothing to account for concurrency). For more on what needs to go into your design, see Section 8.4.

11

6.3 Game

All the functions in the Game module referred to above are specified in game.mli. The function loadBoard is im-
plemented for you, and most of the other functions are left unimplemented. However, to give you more of an idea
of how to start, we have provided an initial definition of the type game, and partial implementations of initGame,
handleAction, and two subfunctions of handleAction (inspect and move).

Depending on your design, you may need to add to or modify the type declaration and these functions, but what
we have given you is a start down one viable path.

6.4 State

We have also provided a partially specified but completely unimplemented State module, with just enough specified in
util.mli for the partial implementations of the functions in Game to be valid. The functions currently specified do
basic lookups by either unit ID or board position, both of which should be efficient. We have not defined the associated
state type or implemented any of the functions.

We strongly suggest that you keep something like the State module in your final design, as the distinction between
game rules and game state is significant.

6.5 Util

We have provided a utility module with a number of minor functions you may find useful. This module also includes
an implementation of Bresenham’s line algorithm. The functions are specified in util.mli.

6.6 Netgraphics

We have provided a simple module that provides functions to send graphical updates. Initialization and connection is
done from the Server module. The functions are specified in netgraphics.ml.

7 Running the game

To run the game, you will need to download the release files from CMS. Once you have that, to run a game on the
local machine, you must:

1. Run buildGameServer.bat to create gameServer.exe

2. Run buildTeam.bat to create team.exe

3. Build and run the GUI client as described in Section 5 (and leave it running)

4. Run gameServer.exe, providing a port number to listen on, a map file to use, the hostname to connect to for
the GUI, and the port to connect to for the GUI (and leave it running)

5. Run two instances of team.exe, providing the address of the game server to connect to (and leave them running)

The two teams will now play out a game. Note that with the initial code you are given, the server will immediately
shut down with a Failure exception due to unimplemented code.

8 Your tasks

There are several parts to the implementation of this project. Make sure you spend time thinking about each part before
starting. Start on this project early. There are many things you will have to take into consideration when designing the
code for each section.

12

8.1 Implementing the game

Your second task is to implement the Steam Fortress game in the file game/game.ml, and any files you choose to add.
Note that you should add files only to the game and team directories. You must implement the rules as described in
Section 2 and handling of actions as described in Section 3.4. You must also make sure that the actions units take are
rendered in the graphic display using the interface detailed in Section 5. You can use the sample team program we
provide to test your game, but for full testing coverage you will need to write your own tests.

8.2 Designing a team

Your third task is to implement a team to play the game. Your team is required to have a thread for each unit that is
responsible for sending action messages and receiving result messages for that unit. A very weak team that you can
use as a basis for your team code is provided.

There are many different strategies for building a good team. Consider, for instance, that your units can communi-
cate and share memory that the opposing team cannot access. Use it to your advantage to coordinate your maneuvers.

Your team will be graded on multiple criteria, focusing on its performance against a variety of test teams, strategic
sophistication, and general effectiveness.

We will provide a server running our implementation of the game that you will be able to connect to, allowing you
to see the game in action, test that your team works correctly, and try your team against other people’s teams. We may
also provide some staff teams to test against, at our discretion.

Further information on the server will be provided soon.

8.3 Documentation

Your final task is to submit a design overview document for this project, just like the ones for the previous assignments.
Since this project is both large and quite open-ended regarding the way one may choose to implement it, documentation
becomes even more important. Your design overview should probably be as long or longer than your design overviews
for the previous assignments.

Your design overview document should cover both your implementation of the game itself and the team you
created. In discussing your team, you should make note of how you dealt with concurrency, how you dealt with
communication between units, what strategies you experimented with, and what you found to be most effective.

8.4 Things to keep in mind

Here are some issues to keep in mind when designing and implementing the game:

• You need to make a good design. This project is both large and complicated; without spending time on making
a design that is both solid and complete, you will very quickly get bogged down when you go to implement
things. The importance of design cannot be overemphasized. Trying to write code before your have your design
is a recipe for disaster on a project of this magnitude.

Before writing any code, you should have a very clear idea of all of the following:

– What concurrency issues exist and how to deal with them

– What information needs to be kept track of to fully represent the game

– How that information will be stored and accessed efficiently

– What the interface between your modules will be

– What invariants will hold between your modules

– Which modules will enforce those invariants

• Think carefully about how to break up your program into loosely coupled modules. The program will be
complex and difficult to debug unless you can develop modules that encapsulate important aspects of the game.
Design the interfaces to these modules carefully so that you can work effectively with your partner and can do
unit testing of the modules as you implement.

13

http://www.cs.cornell.edu/courses/cs3110/2009sp/hw/overview-requirements.html

• Make sure that what is going on in the game matches what is going on in the graphics. Updating one does
not automatically update the other. If you are watching the game and something seems to go wrong, remember,
it could just be the code controlling the output to the screen. Moreover, just because the graphics look correct
doesn’t mean the game is acting properly. It would behoove you to maintain some sort of invariant between the
status of the game and the status of the graphics.

• Problems in the game might actually be problems with the teams. If you are using your own teams to test
the actions and something seems wrong, the teams could just as easily be at fault.

• Implement and test the actions one at a time. Don’t try to implement all of the actions and test them with
one single team. Start with easier actions and work up to the harder ones. For example, start with getting the
already-written MyStatus to work, then try another simple action like GameStatus.

8.5 Final submission

You will submit:

1. A zip file of all files in your ps6 directory, including those you did not edit. We should be able to unzip this and
run the buildGameServer.bat script to compile your game code, and the buildTeam.bat script to compile
your team code (i.e., you should modify the scripts to include all necessary files). This should include:

• your game implementation

• your team, named team.ml in the team directory along with any files it needs to build and run

It is very important that you organize your files in this manner, as it greatly simplifies grading.

2. Your documentation file, in .pdf format.

Although you will submit the entire ps6 directory, you should only add new files to the game and team folders; the
other folders should remain unchanged. If you add new .ml or .mli files, you should add them to the compilation
scripts. Note again that we expect to be able to unzip your submission and run the buildToplevel.bat script in
the newly created directory to compile your code without errors or warnings. Submissions that do not meet this
criterion will be docked points.

9 Tournament

On TBA, after the problem set is due, there will be a Steam Fortress tournament which you are encouraged to submit
your team programs to. There will be lots of free food, and the chance to watch your team perform live. The winner
gets bragging rights and has their name posted on the 312/3110 Tournament hall of fame.

10 Written Problem

Recall the binary search algorithm. The time required for finding an element is O(log n), but to add a new element,
we require O(n) time in the worst case.

Über-hacker Zoe Marti has come up with a new data structure: the Zardoz array. This data structure supports
two operations, SEARCH and INSERT. Define k = dlog2(n + 1)e. We denote the binary representation of n as
nk−1nk−2...n0. A Zardoz array has k sorted arrays, A0, A1, ..., Ak−1. Each Ai has space for 2i elements. If ni = 0,
then Ai contains 0 elements, and if ni = 1, then Ai contains 2i elements. Note that an array can’t be partially filled.
We also note that the total number of elements in a Zardoz array is still n, since

∑k−1
i=0 ni2

i = n. Finally, while each
Ai is sorted, we do not enforce any relationship between the elements of different arrays.

1. Describe how to perform SEARCH on a Zardoz array. Analyze its worst-case running time.

2. Describe how to perform INSERT on a Zardoz array. Analyze its worst-case running time, and, using the
potential method, analyze its amortized running time.

14

http://www.cs.cornell.edu/andru/cs312/tournaments.html
http://en.wikipedia.org/wiki/Binary_search_algorithm

	Introduction
	Reading this document
	Updates to Problem Set
	Point Breakdown

	Game Rules
	Control Points
	Scoring and Winning
	Units
	Initial Positioning
	Movement and Turning
	Health
	Respawning
	Ability Overview
	Medic Abilities
	Pyro Abilities
	Soldier Abilities

	Ability Details
	Ability Targeting and Range
	Square Targeting
	Self Targeting
	Cone Targeting
	Melee Targeting

	Communication
	Client-Server Framework
	Communication as a client
	Control Messages
	Control Quick Reference

	Action Messages
	Action Quick Reference
	Action Specification

	Result Messages
	Result Quick Reference

	Maps
	GUI
	GUI Client
	Building the GUI Client
	Sending messages to the GUI
	Graphics Commands

	Provided source code
	Code Structure
	Server
	Game
	State
	Util
	Netgraphics

	Running the game
	Your tasks
	Implementing the game
	Designing a team
	Documentation
	Things to keep in mind
	Final submission

	Tournament
	Written Problem

