A pattern is a set of objects with a recognizable property.

- In computer science, we’re typically interested in patterns that are sequences of character strings
 - I think “Halpern” a very interesting pattern
 - I may want to find all occurrences of that pattern in a paper
- Other patterns:
 - if followed by any string of characters followed by then
 - all filenames ending with “.doc”

Pattern matching comes up all the time in text search.

A finite automaton is a particularly simple computing device that can recognize certain types of patterns, called regular languages

- The text does not cover finite automata; there is a separate handout on CMS.
Finite Automata

A *finite automaton* is a machine that is always in one of a finite number of states.

- When it gets some input, it moves from one state to another
 - If I’m in a “sad” state and someone hugs me, I move to a “happy” state
 - If I’m in a “happy” state and someone yells at me, I move to a “sad” state

- **Example:** A digital watch with “buttons” on the side for changing the time and date, or switching it to “stopwatch” mode, is an automaton
 - What are the states and inputs of this automaton?

- A certain state is denoted the *start* state
 - That’s how the automaton starts life

- Other states are denoted *final* state
 - The automaton stops when it reaches a final state
 - (A digital watch has no final state, unless we count running out of battery power.)
A finite automaton can be represented by a labeled directed graph.

- The nodes represent the states of the machine
- The edges are labeled by inputs, and describe how the machine transitions from one state to another
Example:

- There are four states: s_0, s_1, s_2, s_3
 - s_0 is the start state (denoted by "start →", by convention)
 - s_0 and s_3 are the final states (denoted by double circles, by convention)
- The labeled edges describe the transitions for each input
 - The inputs are either 0 or 1
 - In state s_0 and reads 0, it stays in s_0
 - If the machine is in state s_0 and reads 1, it moves to s_1
 - If the machine is in state s_1 and reads 0, it moves to s_1
 - If the machine is in state s_1 and reads 1, it moves to s_2
What happens on input 00000? 0101010? 010101? 11?

- Some strings move the automaton to a final state; some don’t.
- The strings that take it to a final state are accepted.
A Parity-Checking Automaton

Here’s an automaton that accepts strings of 0s and 1s that have even parity (an even number of 1s).
We need two states:

▶ s_0: we’ve seen an even number of 1s so far
▶ s_1: we’ve seen an odd number of 1s so far

The transition function is easy:

▶ If you see a 0, stay where you are; the number of 1s hasn’t changed
▶ If you see a 1, move from s_0 to s_1, and from s_1 to s_0
Finite Automata: Formal Definition

A \textit{(deterministic) finite automaton} is a tuple $M = (S, I, f, s_0, F)$:

$\begin{itemize}
\item S is a finite set of states;
\item I is a finite input alphabet (e.g. $\{0, 1\}$, $\{a, \ldots, z\}$)
\item f is a transition function; $f : S \times I \rightarrow S$
 $\quad f$ describes what the next state is if the machine is in state s
 and sees input $i \in I$.
\item $s_0 \in S$ is the initial state;
\item $F \subseteq S$ is the set of final states.
\end{itemize}$
Example:

\[S = \{ s_0, s_1, s_2, s_3 \} \]
\[I = \{ 0, 1 \} \]
\[F = \{ s_0, s_3 \} \]

The transition function \(f \) is described by the graph;

\[f(s_0, 0) = s_0; \quad f(s_0, 1) = s_1; \quad f(s_1, 0) = s_0; \ldots \]

You should be able to translate back and forth between finite automata and the graphs that describe them.
Describing Languages

The *language* accepted (or *recognized*) by an automaton is the set of strings that it accepts.

▶ A *language* is a set of strings

We need tools for describing languages.

▶ If A and B are sets of strings, then AB, the *concatenation* of A and B, is the set of all strings ab such that $a \in A$ and $b \in B$.

▶ **Example:** If $A = \{0, 11\}$, $B = \{111, 00\}$, then

 $AB = \{0111, 000, 1111, 1100\}$

 $BA = \{1110, 11111, 000, 0011\}$

▶ Define A^{n+1} inductively:

 ▶ $A^0 = \{\lambda\}$: λ is the empty string

 ▶ $A^1 = A$

 ▶ $A^{n+1} = AA^n$

▶ $A^* = \bigcup_{n=0}^{\infty} A^n$.
Describing Languages

The *language* accepted (or *recognized*) by an automaton is the set of strings that it accepts.

- A *language* is a set of strings

We need tools for describing languages.

- If A and B are sets of strings, then AB, the *concatenation* of A and B, is the set of all strings ab such that $a \in A$ and $b \in B$.

 Example: If $A = \{0, 11\}$, $B = \{111, 00\}$, then
 - $AB = \{0111, 000, 1111, 1100\}$
 - $BA = \{1110, 11111, 000, 0011\}$

- Define A_{n+1} inductively:
 - $A^0 = \{\lambda\}$: λ is the empty string
 - $A^1 = A$
 - $A^{n+1} = AA^n$

- $A^* = \bigcup_{n=0}^{\infty} A^n$.

- What’s $\{0, 1\}^n$? $\{0, 1\}^*$? $\{11\}^*$?
Regular Expressions

A *regular expression* is an algebraic way of defining a pattern.

Definition: The set of *regular expressions over I* (where \(I \) is an input set) is the smallest set \(S \) of expressions such that:

- the symbol \(\emptyset \in S \) (that should be a boldface \(\emptyset \))
- the symbol \(\lambda \in S \) (that should be a boldface \(\lambda \))
- the symbol \(x \in S \) is a regular expression if \(x \in I \);
- if \(E_1 \) and \(E_2 \) are in \(S \), then so are \(E_1 E_2 \), \(E_1 \cup E_2 \) and \(A^* \).

That is, we start with the empty set, \(\lambda \), and elements of \(I \), then close off under union, concatenation, and \(* \).

- Note that a regular set is a *syntactic* object: a sequence of symbols.
- There is an equivalent inductive definition (see homework).

Those of you familiar with the programming language Perl or Unix searches should recognize the syntax . . .
Each regular expression E over I defines a subset of I^*, denoted $L(E)$ (the *language* of E) in the obvious way:

- $L(\emptyset) = \emptyset$;
- $L(\lambda) = \{\lambda\}$;
- $L(x) = \{x\}$;
- $L(E_1 E_2) = L(E_1) L(E_2)$;
- $L(E_1 \cup E_2) = L(E_1) \cup L(E_2)$;
- $L(E^*) = L(E_1)^*$.

Examples:

- What’s $L(0^*10^*10^*)$?
- What’s $L((0^*10^*10^*)^n)$? $L(0^*(0^*10^*10^*)^*)$?
- $L(0^*(0^*10^*10^*)^*)$ is the language accepted by the parity automaton!
- If $\Sigma = \{a, \ldots, z, A, \ldots, Z, 0, \ldots, 9\} \cup \text{Punctuation}$, what is $\Sigma^* \text{Halpern}\Sigma^*$?
 - *Punctuation* consists of the punctuation symbols (comma, period, etc.)
 - Σ is an abbreviation of $a \cup b \cup \ldots$ (the union of the symbols in Σ)
Can you define an automaton that accepts exactly the strings in $\Sigma^* \text{Halpern}\Sigma^*$?

- How many states would you need?

\begin{verbatim}
(0 ∪ 1)\ast 0 \cup 111 \ast
\end{verbatim}

Perhaps clearer:

\begin{verbatim}
((0 ∪ 1)\ast 0 \cup 111)\ast
\end{verbatim}

It's not easy to prove this formally!
Can you define an automaton that accepts exactly the strings in \(\Sigma^* \text{Halpern}\Sigma^* \)?

- How many states would you need?

What language is represented by the automaton in the original example:
Can you define an automaton that accepts exactly the strings in $\Sigma^* \text{Halpern}\Sigma^*$?

- How many states would you need?

What language is represented by the automaton in the original example:

- $((10)^*0^*((110) \cup (111))^*)^*$
- Perhaps clearer: $((0 \cup 1)^*0 \cup 111)^*$
- It’s not easy to prove this formally!
What language is accepted by the following automata:
What language is accepted by the following automata:

$L(1^*)$
What language is accepted by the following automata:

\[L(1^*) \]

\[L(1 \cup 01) \]
\begin{equation}
L = \left(0 \times 10 \left(0 \cup 1\right) \times \right) \cup 0,1 \cup 0,1
\end{equation}
$L(0^*10(0 \cup 1)^*)$
Nondeterministic Finite Automata

So far we’ve considered *deterministic* finite automata (DFA)
 - what happens in a state is completely determined by the input. symbol read

Nondeterministic finite automata allow several possible next states when an input is read.

Formally, a nonsterministic finite automaton is a tuple $M = (S, I, f, s_0, F)$. All the components are just like a DFA, except now $f : S \times I \rightarrow 2^S$ (before, $f : S \times I \rightarrow S$).
 - if $s' \in f(s, i)$, then s' is a possible next state if the machines is in state s and sees input i.
We can still use a graph to represent an NFA. There might be several edges coming out of a state labeled by $i \in I$. In the example below, there are two edges coming out of s_0 labeled 0:

![Graph Diagram]

- can either stay in s_0 or move to s_2
An NFA M accepts (or recognizes) a string x if it is possible to get to a final state from the start state with input x.

The language L is accepted by an NFA M consists of all strings accepted by M.

What language is accepted by this NFA:

$L = (0^* \cup 0^* 01 \cup 0^* 11)$
An NFA M accepts (or recognizes) a string x if it is possible to get to a final state from the start state with input x.

The language L is accepted by an NFA M consists of all strings accepted by M.

What language is accepted by this NFA:

$L(0^* \cup 0^*01 \cup 0^*11)$
Equivalence of Automata

Every DFA is an NFA, but not every NFA is a DFA.

▶ Do we gain extra power from nondeterminism?
 ▶ Are there languages that are accepted by an NFA that can’t be accepted by a DFA?
 ▶ Somewhat surprising answer: NO!

Define two automata to be equivalent if they accept the same language.

Example:
Theorem: Every nondeterministic finite automaton is equivalent to some deterministic finite automaton.

Proof: Given an NFA $M = (S, I, f, s_0, F)$, let $M' = (2^S, I, f', \{s_0\}, F')$, where

- $f'(A, i) = \{t : t \in f(s, i) \text{ for some } s \in A\} \in 2^S$
- $f : 2^S \times I \rightarrow 2^S$
- $F' = \{A : A \cap F \neq \emptyset\}$

Thus,

- the states in M' are subsets of states in M;
- the final states in M' are the sets which contain a final state in M;
- in state A, given input i, the next state consists of all possible next states from an element in A.

M' is **deterministic**.

- This is called the *subset* construction.
- The states in M' are subsets of states in M.
We want to show that M accepts x iff M' accepts x.

- Let $x = x_1 \ldots x_k$.

- If M accepts x, then there is a sequence of states s_0, \ldots, s_k such that $s_k \in F$ and $s_{i+1} \in f(s_i, x_i)$.
 - That’s what it means for an NFA M to accept x
 - s_0, \ldots, s_k is a possible sequence of states that M goes through on input x
 - It’s only one possible sequence: M is an NFA

- Define A_0, \ldots, A_k inductively:
 $A_0 = \{s_0\}$ and $A_{i+1} = f'(A_i, x_i)$.
 - A_0, \ldots, A_k is the sequence of states that M' goes through on input x.
 - Remember: a state in M' is a set of states in M.
 - M' is deterministic: this sequence is unique.

- An easy induction shows that $s_i \in A_i$.
- Therefore $s_k \in A_k$, so $A_k \cap F \neq \emptyset$.
- Conclusion: $A_k \in F'$, so M' accepts x.
For the converse, suppose that M' accepts x

- Let A_0, \ldots, A_k be the sequence of states that M' goes through on input x.
- Since $A_k \cap F \neq \emptyset$, there is some $t_k \in A_k \cap F$.
- By induction, if $1 \leq j \leq k$, can find $t_{k-j} \in A_{k-j}$ such that $t_{k-j+1} \in f(t_{k-j}, x_{k-j})$.
- Since $A_0 = \{s_0\}$, we must have $s_0 = t_0$.
- Thus, $t_0 \ldots t_k$ is an “accepting path” for x in M
- Conclusion: M accepts x
Notes:

- Michael Rabin and Dana Scott won a Turing award for defining NFAs and showing they are equivalent to DFAs.
- This construction blows up the number of states:
 - $|S'| = 2^{|S|}$
 - Sometimes you can do better; in general, you can’t.
Theorem: A language is accepted by a finite automaton iff it is regular.

First we’ll show that every regular language is accepted by some finite automaton:

Proof: We proceed by induction on the (length of/structure of) the description of the regular language. We need to show that

- \(\emptyset \) is accepted by a finite automaton
 - Easy: build an automaton where no input ever reaches a final state
- \(\lambda \) is accepted by a finite automaton
 - Easy: an automaton where the initial state accepts
- each \(x \in I \) is accepted by a finite automaton
 - Easy: an automaton with two states, where only \(x \) leads from \(s_0 \) to an accepting state.
if A and B are accepted, so is AB

Proof: Suppose that $M_A = (S_A, I, f_A, s_A, F_A)$ accepts A and $M_B = (S_B, I, f_B, s_B, F_B)$ accepts B. Suppose that M_A and M_B and NFAs, and S_A and S_B are disjoint (without loss of generality).

Idea: We hook M_A and M_B together. Let NFA $M_{AB} = (S_A \cup S_B, I, f_{AB}, s_A, F^+_B)$, where

- $F^+_B = \begin{cases} F_B \cup F_A & \text{if } \lambda \in B; \\ F_B & \text{otherwise} \end{cases}$

- $t \in f_{AB}(s, i)$ if either
 - $s \in S_A$ and $t \in f_A(s)$, or
 - $s \in S_B$ and $t \in f_B(s)$, or
 - $s \in F_A$ and $t \in f_B(s_B)$.

Idea: given input $xy \in AB$, the machine “guesses” when to switch from running M_A to running M_B.

- M_{AB} accepts AB.
if A and B are accepted, so is $A \cup B$.

Proof: Suppose that $M_A = (S_A, I, f_A, s_A, F_A)$ accepts A and $M_B = (S_B, I, f_B, s_B, F_B)$ accepts B. Suppose that M_A and M_B and NFAs, and S_A and S_B are disjoint.

Idea: given input $x \in A \cup B$, the machine “guesses” whether to run M_A or M_B.

$M_{A\cup B} = (S_A \cup S_B \cup \{s_0\}, I, f_{A\cup B}, s_0, F_{A\cup B})$, where

- s_0 is a new state, not in $S_A \cup S_B$
- $f_{A\cup B}(s) = \begin{cases} f_A(s) & \text{if } s \in S_A \\ f_B(s) & \text{if } s \in S_B \\ f_A(s_A) \cup f_B(s_B) & \text{if } s = s_0 \end{cases}$
- $F_{A\cup B} = \begin{cases} F_A \cup F_B \cup \{s_0\} & \text{if } \lambda \in A \cup B \\ F_A \cup F_B & \text{otherwise.} \end{cases}$

$M_{A\cup B}$ accepts $A \cup B$.
if A is accepted, so is A^*.

- $M_{A^*} = (S_A \cup \{s_0\}, I, f_{A^*}, s_0, F_A \cup \{s_0\})$, where
 - s_0 is a new state, not in S_A;
 - $f_{A^*}(s) = \begin{cases} f_A(s) & \text{if } s \in S_A - F_A; \\ f_A(s) \cup f_A(s_A) & \text{if } s \in F_A; \\ f_A(s_A) & \text{if } s = s_0 \end{cases}$

- M_{A^*} accepts A^*.
Next we’ll show that every language accepted by a finite automaton is regular:

Proof: Fix an automaton M with states $\{s_0, \ldots, s_n\}$.

Let $S(s_i, s_j, k)$ be the set of strings such that force M from state s_i to s_j on a path such that every intermediate state is $\{s_0, \ldots, s_k\}$.

- E.g., $S(s_4, s_5, 2)$ consists of all strings that force M from s_4 to s_3 on a path that goes through only s_0, s_1, and s_2 (in any order, perhaps with repeats).
Lemma 1: If \(s_j \neq s_{k+1} \), then
\[
S(s_i, s_j, k + 1) = S(s_i, s_j, k) \cup S(s_i, s_{k+1}, k)(S(s_{k+1}, s_{k+1}, k))^*S(s_{k+1}, s_j, k).
\]
Lemma 1: If \(s_j \neq s_{k+1} \), then \(S(s_i, s_j, k+1) = S(s_i, s_j, k) \cup S(s_i, s_{k+1}, k)(S(s_{k+1}, s_{k+1}, k))^* S(s_{k+1}, s_j, k) \).

Proof: If a string \(\sigma \) forces \(M \) from \(s_i \) to \(s_J \) on a path with intermediates states all in \(\{s_0, \ldots, s_{k+1}\} \), then the path either does not go through \(s_{k+1} \) at all, so is in \(S(s_i, s_j, k) \), or goes through \(s_{k+1} \) some finite number of times, say \(m \). That is, the path looks like this:

\[
 s_i \ldots s_{k+1} \ldots s_{k+1} \ldots s_{k+1} \ldots s_j
\]

where all the states in the \(\ldots \) part are in \(\{s_0, \ldots, s_k\} \). Thus, we can split up the string \(\sigma \) into \(m + 1 \) corresponding pieces:

- \(\sigma_0 \) that takes \(M \) from \(s_0 \) to \(s_{k+1} \),
- each of \(\sigma_1, \ldots, \sigma_m \) take \(M \) from \(s_{k+1} \) back to \(s_{k+1} \)
- \(\sigma_{m+1} \) takes \(M \) from \(s_{k+1} \) to \(s_j \).

Thus,

- \(\sigma_0 \in S(s_i, s_{k+1}, k) \)
- \(\sigma_1, \ldots, \sigma_m \) are all in \(S(s_{k+1}, s_{k+1}, k) \)
- \(\sigma_{m+1} \in S(s_{k+1}, s_j, k) \)
- \(\text{So } \sigma = \sigma_0 \sigma_1 \ldots \sigma_{m+1} \in S(s_i, s_j, k) \cup S(s_i, s_{k+1}, k)(S(s_{k+1}, s_{k+1}, k))^* S(s_{k+1}, s_j, k) \)
Lemma 2: If $s_j = s_{k+1}$, then
$S(s_i, s_j, k + 1) = S(s_i, s_j, k) \cup S(s_i, s_j, k)(S(s_j, s_j, k))^*$.
Proof: Same idea as previous proof.
Lemma 2: If $s_j = s_{k+1}$, then
$S(s_i, s_j, k + 1) = S(s_i, s_j, k) \cup S(s_i, s_j, k)(S(s_j, s_j, k))^*$.

Proof: Same idea as previous proof.

Lemma 3: $S(s_i, s_j, -1)$ is regular.

Proof: For a string σ to be in $S(s_i, s_j, -1)$, it must go directly from s_i to s_j, without going through any intermediate strings. Thus, σ must be some subset of I (possibly empty) together with λ if $s_i = s_j$. Either way, $S(s_i, s_j, -1)$ is regular.
Lemma 2: If $s_j = s_{k+1}$, then
\[S(s_i, s_j, k + 1) = S(s_i, s_j, k) \cup S(s_i, s_j, k)(S(s_j, s_j, k))^*. \]

Proof: Same idea as previous proof.

Lemma 3: $S(s_i, s_j, -1)$ is regular.

Proof: For a string σ to be in $S(s_i, s_j, -1)$, it must go directly from s_i to s_j, without going through any intermediate strings. Thus, σ must be some subset of I (possibly empty) together with λ if $s_i = s_j$. Either way, $S(s_i, s_j, -1)$ is regular.

Lemma 4: $S(s_i, s_j, N)$ is regular for all N with $-1 \leq N \leq n$.

Proof: An easy induction. Lemma 3 gives the base case; Lemmas 1 and 2 give the inductive step.
Lemma 2: If $s_j = s_{k+1}$, then
\[S(s_i, s_j, k + 1) = S(s_i, s_j, k) \cup S(s_i, s_j, k)(S(s_j, s_j, k))^*. \]

Proof: Same idea as previous proof.

Lemma 3: $S(s_i, s_j, -1)$ is regular.

Proof: For a string σ to be in $S(s_i, s_j, -1)$, it must go directly from s_i to s_j, without going through any intermediate strings. Thus, σ must be some subset of I (possibly empty) together with λ if $s_i = s_j$. Either way, $S(s_i, s_j, -1)$ is regular.

Lemma 4: $S(s_i, s_j, N)$ is regular for all N with $-1 \leq N \leq n$.

Proof: An easy induction. Lemma 3 gives the base case; Lemmas 1 and 2 give the inductive step.

The language accepted by M is the union of the sets $S(s_0, s', n)$ such that s' is a final state. Since regular languages are closed under union, the result follows.
We can use the ideas of this proof to compute the regular language accepted by an automaton.

\[S(s_0, s_0, -1) = \{ \lambda, 0 \}; \quad S(s_0, s_1, -1) = \{1\}; \ldots \]

\[S(s_0, s_0, 0) = 0^*; \quad S(s_1, s_0, 0) = 00^*; \quad S(s_0, s_1, 0) = 0^*1; \]

\[S(s_1, s_1, 0) = 00^*1; \ldots \]

\[S(s_0, s_0, 1) = (0^*(10)^*)^*; \ldots \]

\[\ldots \]

We can methodically build up \(S(s_0, s_0, 2) \), which is what we want (since \(s_3 \) is unreachable).
A Non-Regular Language

Not every language is regular (which means that not every language can be accepted by a finite automaton).

Theorem: \(L = \{0^n1^n : n = 0, 1, 2, \ldots\} \) is not regular.

Proof: Suppose, by way of contradiction, that \(L \) is regular. Then there is a DFA \(M = (S, \{0, 1\}, f, s_0, F) \) that accepts \(L \). Suppose that \(M \) has \(N \) states. Let \(s_0, \ldots, s_{2N} \) be the set of states that \(M \) goes through on input \(0^N1^N \).

Thus \(f(s_i, 0) = s_{i+1} \) for \(i = 0, \ldots, N \).

Since \(M \) has \(N \) states, by the pigeonhole principle (remember that?), at least two of \(s_0, \ldots, s_N \) must be the same. Suppose it’s \(s_i \) and \(s_j \), where \(i < j \), and \(j - i = t \).

Claim: \(M \) accepts \(0^N0^t1^N \), and \(0^N0^{2t}1^N \), \(0^N0^{3t}1^N \).

Proof: Starting in \(s_0 \), \(O^i \) brings the machine to \(s_i \); another \(0^t \) bring the machine back to \(s_i \) (since \(s_j = s_{i+t} = s_i \)); another \(0^t \) bring machine back to \(s_i \) again. After going around the loop for a while, the can continue to \(s_N \) and accept.
The Pumping Lemma

The techniques of the previous proof generalize. If \(M \) is a DFA and \(x \) is a string accepted by \(M \) such that \(|x| \geq |S| \)

\(|S| \) is the number of states; \(|x| \) is the length of \(x \) then there are strings \(u, v, w \) such that

\(x = uvw, \)
\(|uv| \leq |S|, \)
\(|v| \geq 1, \)
\(uv^iw \) is accepted by \(M \), for \(i = 0, 1, 2, \ldots \).

The proof is the same as on the previous slide.

\(x \) was \(0^n1^n \), \(u = 0^i \), \(v = 0^t \), \(w = 0^{N-t-i}1^N \).

We can use the Pumping Lemma to show that many languages are not regular

\(\{1^{n^2} : n = 0, 1, 2, \ldots \} \): homework
\(\{0^{2n}1^n : n = 0, 1, 2, \ldots \} \): homework
\(\{1^n : n \text{ is prime} \} \)
\(\ldots \)
More Powerful Machines

Finite automata are very simple machines.

- They have no memory
- Roughly speaking, they can’t count beyond the number of states they have.

Pushdown automata have states and a *stack* which provides unlimited memory.

- They can recognize all languages generated by *context-free grammars* (CFGs)
 - CFGs are typically used to characterize the syntax of programming languages
- They can recognize the language \(\{0^n1^n : n = 0, 1, 2, \ldots \} \), but not the language \(L' = \{0^n1^n2^n : n = 0, 1, 2, \ldots \} \)

Linear bounded automata can recognize \(L' \).

- More generally, they can recognize *context-sensitive grammars* (CSGs)
- CSGs are (almost) good enough to characterize the grammar of real languages (like English)
Most general of all: Turing machine (TM)
 ▶ Given a *computable* language, there is a TM that accepts it.
 ▶ This is essentially how we define computability.

If you’re interested in these issues, take CS 4810!