
More on automata

March 24 — April 7

1 Automata constructions

Now that we have a formal model of a machine, it is useful to make some general
constructions.

1.1 DFA Union / Product construction

Suppose we have two machines M1 and M2, and we wish to construct a machine
M that recognizes L(M1) ∪ L(M2).

To be more specific, let’s let Q1 be the set of states of M1, q01 be the starting
state of M1, A1 be the accepting states of M1, and δ1 be the transition function
of M1. Similarly for M2.

For example, we may want to accept the strings that have an even number
of as and and only one b using machines M1 that recognizes strings with an
even number of as and M2 that recognizes strings with exactly one b:
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What information does M need to know while processing a string? If we
knew what states M1 and M2 would be in while processing the string, we could
decide whether to accept (accept if either one says “accept”).

So, we create a state of M for each pair of states from M1 and M2. The
intent is that if, after parsing the string x, M1 ends in state q1 and M2 ends in
state q2, then M should end in the state (q1, q2). Thus the set of states of M is

QM = QM1
×QM2

We can draw these states in a grid: the states of M1 form the x-axis and
the states of M2 form the y-axis:
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To figure out the starting state, we ask what we know about the empty
string. We know M1 and M2 would both be in their starting states (let’s call
them q01 and q02). So M should be in the state (q01, q02).

q0M = (q01, q02)

If M is in any state (q1, q2), and it sees some character a, where should it
transition? Well, we know M1 would have been in state q1, and would thus
have transitioned on a to state δ1(q1, a) (where δ1 is the transition function for
M1). Similarly, M2 would transition to δ2(q2, a). Thus M should transition to
the state (δ1(q1, a), δ2(q2, a)).

δM ((q1, q2), a) = (δ1(q1, a), δ2(q2, a))

Finally, which states of M should be accepting states? Since we are trying
to accept the union of L(M1) and L(M2), we should accept the string x if either
M1 or M2 would. So the state (q1, q2) should be an accept state if either q1 is
an accept state of M1 or q2 is an accept state of M2:

AM = {(q1, q2) | q1 ∈ A1 or q2 ∈ A2}

Here is the complete picture of M :
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We’ve built a machine. Can we prove that it accepts the correct language?
Our intent is that if x causes M to transition to the state (q1, q2), then M1

would be in q1 and M2 would be in q2. Formally, we could prove

δ̂M (q0M , x) = δ̂1(q01, x), δ̂2(q02, x)

using a straightforward inductive proof (you will work out the details for a
closely related problem in the homework).

Using this, we can calculate the language of M :

L(M) = {x ∈ Σ∗ | δ̂M (q0M , x) ∈ AM}
= · · · expand using definitions, details in the homework · · ·
= {x | x ∈ L(M1) or x ∈ L(M2)}
= L(M1) ∪ L(M2)

which was our goal.

1.2 NFA Union

Constructing an NFA to recognise the union is much easier: we can simply
create a new start state with epsilon transitions to the start states of the two
original machines:
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1.3 NFA to DFA conversion

It seems as though NFAs are “more powerful” than DFAs: we have more choices
when constructing NFAs. It turns out however that NFAs and DFAs accept the
same set of languages. That is, if a language L is recognized by an NFA N ,
then there is a DFA M that also recognizes L.

Given a string x, M should accept x if any of the states that N could reach
while processing x are accepting states. We can use this idea to construct M :
a state of M will correspond to a set of states of N .

QM = P(QN )

Our intent is that if M is in the M -state S (which is a set of states of N), then
N could be in any of the states of S.

M should accept in state S if any of the N -states q ∈ S are themselves
accept states:

AM = {S ∈ QM | ∃q ∈ S such that q ∈ AN}

N starts in its start state q0N , but it can immediately perform an epsilon
transition. Thus after processing no input, M should be in the state correspond-
ing to the set of states reachable from q0N using epsilon transitions:

q0M = ε̂N (q0N )

Finally, we need to construct the transition function δM to match our in-
tended interpretation of the states of M . If M is in a state S ∈ QM (which is a
set of states of N), then we know N could have been in any of the states q ∈ S.
That means that after processing an input a, N could be in any of the states
reachable from q. This yields the following definition:

δM (S, a) =
⋃
q∈S

δ̂N (q, a)
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The key property of this construction is that δ̂M (q0M , x) = δ̂N (q0N , x) (by
an easy inductive proof on x). From this, we can expand the definitions of L(M)
and L(N) to show that they are the same.

1.4 DFA minimization

One advantage of having a clear machine model is that we can reason about
optimizations. One optimization we could do for DFAs is to reduce the number
of states.

For example, the following DFA clearly recognizes the language {ε}:

q1

q2

q3

a

b

a

b

a

b

In a sense, the states q2 and q3 are equivalent: if we start processing a string
x in either of them, we will always get the same answer. So we can lump them
together into a single big “metastate”:
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We can generalize this idea. Let ∼ be the equivalence relation on Q defined
by

q1 ∼ q2 iff ∀x ∈ Σ∗, δ̂(q1, x) ∈ A⇐⇒ δ̂(q2, x) ∈ A
This formalizes the idea that if we start processing x in q1 or in q2, we will
always get the same answer. If we know ∼, we can construct an equivalent
machine Mmin as follows:

• The states Qmin are equivalence classes of states of M : Qmin = QM/ ∼

• The accepting states of Qmin are the equivalence classes of accepting states
of M . Note that if q1 ∈ AM and q2 ∼ q1 then q2 ∈ AM (plug ε into the
definition of ∼).

• The initial state of Qmin is just [q0M ].

• The transition function δmin is given by δmin([q], a) = [δM (q, a)]. This is
well-defined (proof by contradiction).
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