1 Lecture summary

- We proved that DFA’s find it hard to count (as proposed in the last lecture)
- We generalized the proof to state and prove the pumping lemma
- We used the pumping lemma to prove that \(\{0^n1^n \mid n \in \mathbb{N} \} \) is not DFA-
 recognizable

2 DFAs find it hard to count

We claim that any machine that recognizes the language \(\{1^c\} \) must have at least
\(c \) states.

Important note: the language \(\{1^c\} \) is different from \(\{1^c \mid c \in \mathbb{N} \} \).

Important note: a machine only recognizes a language \(L \) if

- it says yes on all inputs in \(L \)
- AND: it says no on all inputs not in \(L \)

In particular, although the machine that recognizes all strings has only one state, and does “recognize” every string in \(1^c \), it does not “recognize” \(\{1^c\} \), because it also accepts other strings (such as \(1^{(c+1)} \))

Proof of claim: Proof by contradiction. Suppose that \(M \) recognizes \(L \) and \(M \) has fewer than \(c \) states. While processing the string \(1^c \), \(M \) passes through states \(q_0, q_1, q_2, \ldots, q_c \). There are \((c + 1) \) such states, but there are fewer than \(c \) states in \(M \), so the same state must be repeated twice in the sequence, i.e. \(q_i = q_j \) for some \(i \) and \(j \).

This means there is a loop; if we add an extra \((j - i) \) ‘1’s to the string, it will still be accepted, it will just traverse the loop an extra time. Therefore \(1^{(c+(j-i))} \) is in the language of \(M \), which contradicts the fact that \(L(M) = \{1^c\} \)

Therefore, there is no machine having fewer than \(c \) states that recognizes \(\{1^c\} \).

3 The pumping lemma

We can use the same kind of proof technique to prove that certain languages
cannot be recognized by \textit{any} machine. The main tool for doing this is called
the pumping lemma.
Claim (pumping lemma): If M is a DFA with n states, and $x \in L(M)$, and $|x| > n$, then there exist strings u, v, and w such that

1. $uvw = x$
2. $|v| \geq 1$
3. $|uv| \leq n$
4. for all c, uv^cw is in $L(M)$

Proof is below.

4 Example using the pumping lemma

Claim: the language \{0^n1^n|n \in \mathbb{N}\} is not DFA-recognizable.

Proof: by contradiction. Suppose there exists a DFA M that recognizes L. Let k be the number of states of M. Since $L = L(M)$, the string 0^k1^k is recognized by M. Since $|0^k1^k| > k$, we can apply the pumping lemma to find some u, v, and w such that $0^k1^k = uvw$, and satisfying the other properties given by the pumping lemma.

Since $|vw| \leq k$, we know that v must only contain ‘0’s. Therefore, if we pump v up, we have $uv^2w = 0^{k+|v|}1^k$, which we are guaranteed is in $L(M)$. But this string is not in L, since it has more ‘0’s than ‘1’s. This contradicts the assumption that $L = L(M)$, and concludes the proof of the claim.

5 Proof of pumping lemma

Consider the first $n + 1$ states traversed while M processes x: q_0, q_1, \ldots, q_n.

Since there are $n + 1$ of them, and M has only n states, we must have $q_i = q_j$ for some $i \neq j$.

Let

• u be the first i characters of x.
• v be the next $(j - i)$ characters of x.
• w be the last $(|x| - j)$ characters of x.

Then clearly $x = uvw$.

Moreover, $|v| \geq 1$ since $j \neq i$.

In addition, $|uw| \leq n$ since $|uv| = j \leq n$.

Finally, while processing uv^cw, M will traverse the states

$$q_0 q_1 \cdots q_{i-1} \overbrace{q_i \cdots (q_j = q_i) \cdots (q_j = q_i) \cdots q_j}^{c \text{ times}} q_{j+1} \cdots q_{|x|}$$

and will therefore end up in $q_{|x|}$. Since x was accepted, $q_{|x|}$ must be an accepting state, so uv^cw will be accepted.