Functions and Inverses

CS 2800: Discrete Structures, Spring 2015

Sid Chaudhuri
Recap: Relations and Functions

- A **relation** between sets A (the **domain**) and B (the **codomain**) is a set of ordered pairs (a, b) such that $a \in A$, $b \in B$ (i.e. it is a subset of $A \times B$)
 - The relation maps each a to the corresponding b
 - Neither all possible a's, nor all possible b's, need be covered
 - Can be one-one, one-many, many-one, many-many

![Diagram of relations and functions]

- Cartesian product
Recap: Relations and Functions

- A **function** is a relation that maps *each* element of A to a *single* element of B
 - Can be one-one or many-one
 - All elements of A must be covered, though not necessarily all elements of B
 - Subset of B covered by the function is its *range/image*
Recap: Relations and Functions

- Instead of writing the function f as a set of pairs, we usually specify its domain and codomain as:

 $$f : A \rightarrow B$$

 ... and the mapping via a rule such as:

 $$f(Heads) = 0.5, \quad f(Tails) = 0.5$$

 or $$f : x \mapsto x^2$$

The function f maps x to x^2
Recap: Relations and Functions

- Instead of writing the function f as a set of pairs, we usually specify its domain and codomain as:

 \[f : A \rightarrow B \]

 ... and the mapping via a rule such as:

 \[f(\text{Heads}) = 0.5, \quad f(\text{Tails}) = 0.5 \]

 or \[f : x \mapsto x^2 \]

- **Note:** the function is f, not $f(x)$!
 - $f(x)$ is the value assigned by the function f to input x
Recap: Injectivity

- A function is **injective** (one-to-one) if every element in the domain has a unique image in the codomain
 - That is, \(f(x) = f(y) \) implies \(x = y \)
Recap: Surjectivity

- A function is **surjective (onto)** if every element of the codomain has a preimage in the domain.
 - That is, for every $b \in B$ there is some $a \in A$ such that $f(a) = b$.
 - That is, the codomain is equal to the range/image.
Recap: Surjectivity

A function is **surjective** (onto) if every element of the codomain has a preimage in the domain.

- That is, for every $b \in B$ there is some $a \in A$ such that $f(a) = b$.
- That is, the codomain is equal to the range/image.
Recap: Bijectivity

- A function is **bijective** if it is both surjective and injective
Composition of Functions

- The **composition** of two functions
 \[f : B \to C \]
 \[g : A \to B \]
 is the function \(f \circ g : A \to C \) defined as
 \[f \circ g : x \mapsto f(g(x)) \]
Composition of Functions

- The **composition** of two functions

 \[f : B \rightarrow C \]

 \[g : A \rightarrow B \]

 is the function \(f \circ g : A \rightarrow C \) defined as

 \[f \circ g : x \mapsto f(g(x)) \]

 \[g \circ f \text{ is not possible unless } A = C ! \]
Factoid of the Day #1

Composition is \textit{associative}

$$(f \circ g) \circ h = f \circ (g \circ h)$$

(two functions are equal if for every input, they give the same output)

\textbf{Prove it!}
Left Inverse of a Function

- \(g : B \rightarrow A \) is a **left inverse** of \(f : A \rightarrow B \) if \(g (f (a)) = a \) for all \(a \in A \)
 - If you follow the function from the domain to the codomain, the left inverse tells you how to go back to where you started
Left Inverse of a Function

- $g : B \rightarrow A$ is a left inverse of $f : A \rightarrow B$ if $g(f(a)) = a$ for all $a \in A$

 - If you follow the function from the domain to the codomain, the left inverse tells you how to go back to where you started
Left Inverse of a Function

- $g : B \rightarrow A$ is a left inverse of $f : A \rightarrow B$ if $g(f(a)) = a$ for all $a \in A$

 - If you follow the function from the domain to the codomain, the left inverse tells you how to go back to where you started
Right Inverse of a Function

• $h : B \rightarrow A$ is a **right inverse** of $f : A \rightarrow B$ if $f(h(b)) = b$ for all $b \in B$

 - If you're trying to get to a destination in the codomain, the right inverse tells you a possible place to start
Right Inverse of a Function

• $h : B \rightarrow A$ is a right inverse of $f : A \rightarrow B$ if $f(h(b)) = b$ for all $b \in B$

 - If you're trying to get to a destination in the codomain, the right inverse tells you a possible place to start
Right Inverse of a Function

- \(h : B \rightarrow A \) is a **right inverse** of \(f : A \rightarrow B \) if \(f(h(b)) = b \) for all \(b \in B \)
 - If you're trying to get to a destination in the codomain, the right inverse tells you a possible place to start
Right Inverse of a Function

- $h : B \rightarrow A$ is a right inverse of $f : A \rightarrow B$ if $f(h(b)) = b$ for all $b \in B$
 - If you're trying to get to a destination in the codomain, the right inverse tells you a possible place to start.
Note the subtle difference!

- The **left inverse** tells you how to *exactly* retrace your steps, *if* you managed to get to a destination
 - “Some places might be unreachable, but I can always put you on the return flight”

- The **right inverse** tells you where you *might* have come from, for *any* possible destination
 - “All places are reachable, but I can't put you on the return flight because I don't know exactly where you came from”
Factoid of the Day #2

Left and right inverses need not exist, and need not be unique

can you come up with some examples?
Left inverse \Leftrightarrow Injective

- **Theorem:** A function is **injective** (one-to-one) iff it has a **left inverse**

- **Proof** (\Leftarrow): Assume $f: A \rightarrow B$ has left inverse g

 - If $f(x) = f(y)$...

 - ... then $g(f(x)) = g(f(y))$ (any fn maps equals to equals)

 - ... i.e. $x = y$ (since g is a left inverse)

 - Hence f is injective
Left inverse ⇔ Injective

- **Theorem:** A function is *injective* (one-to-one) iff it has a *left inverse*

- **Proof** (⇒): Assume $f : A \to B$ is injective
 - Pick any a_0 in A, and define g as
 $$g(b) = \begin{cases}
 a & \text{if } f(a) = b \\
 a_0 & \text{otherwise}
 \end{cases}$$
 - This is a well-defined function: since f is injective, there can be at most a single a such that $f(a) = b$
 - Also, if $f(a) = b$ then $g(f(a)) = a$, by construction
 - Hence g is a left inverse of f
Right inverse \iff Surjective

Theorem: A function is **surjective** (onto) iff it has a right inverse

Proof (\iff): Assume $f: A \to B$ has right inverse h

- For any $b \in B$, we can apply h to it to get $h(b)$
- Since h is a right inverse, $f(h(b)) = b$
- Therefore every element of B has a preimage in A
- Hence f is surjective
Right inverse ⇔ Surjective

• **Theorem:** A function is surjective (onto) iff it has a right inverse

• **Proof** (\Rightarrow): Assume $f : A \rightarrow B$ is surjective

 – For every $b \in B$, there is a non-empty set $A_b \subseteq A$ such that for every $a \in A_b, f(a) = b$ (since f is surjective)

 – Define $h : b \mapsto$ an arbitrary element of A_b

 – Again, this is a well-defined function since A_b is non-empty (and assuming the “axiom of choice”!)

 – Also, $f(h(b)) = b$ for all $b \in B$, by construction

 – Hence h is a right inverse of f
Recap: Left and Right Inverses

- A function is *injective* (one-to-one) iff it has a *left inverse*
- A function is *surjective* (onto) iff it has a *right inverse*
Factoid for the Day #3

If a function has both a left inverse and a right inverse, then the two inverses are identical, and this common inverse is unique

(Prove!)

This is called the two-sided inverse, or usually just the inverse f^{-1} of the function f
Bijection and two-sided inverse

- A function f is bijective iff it has a two-sided inverse

 Proof (\Rightarrow): If it is bijective, it has a left inverse (since injective) and a right inverse (since surjective), which must be one and the same by the previous factoid

 Proof (\Leftarrow): If it has a two-sided inverse, it is both injective (since there is a left inverse) and surjective (since there is a right inverse). Hence it is bijective.