Independence and Conditional Probability

CS 2800: Discrete Structures, Spring 2015

Sid Chaudhuri
Independence of Events

Two events A and B in a probability space are independent if and only if

$$P(A \cap B) = P(A) \cdot P(B)$$

Mathematical definition of independence
WTF?

Why does this even make sense?
Independence of Events

\[P(A \cap B) = P(A)P(B) \]
Independence of Events

\[P(A \cap B) = P(A) P(B) \]

if and only if

\[P(B) = \frac{P(A \cap B)}{P(A)} \]

(assuming \(P(A) \neq 0 \))
Independence of Events

\[P(A \cap B) = P(A)P(B) \]

if and only if

\[P(B) = \frac{P(A \cap B)}{P(A)} \]

(assuming \(P(A) \neq 0 \))
Conditional Probability

The conditional probability of B, given A, is written

$$P(B|A)$$
Conditional Probability

The **conditional probability** of B, given A, is written

$$P(B|A)$$

The probability of
The **conditional probability** of B, given A, is written

$$P(B|A)$$
Conditional Probability

The **conditional probability** of B, given A, is written

$$P(B|A)$$

The probability of B given

The probability of B, given
Conditional Probability

The conditional probability of \(B \), given \(A \), is written

\[
P(B|A)
\]
Conditional Probability

The conditional probability of B, given A, is written

\[P(B|A) \]

and defined as

\[\frac{P(A \cap B)}{P(A)} \]
Conditional Probability

The **conditional probability** of B, given A, is written

\[P(B|A) \]

and defined as

\[\frac{P(A \cap B)}{P(A)} \]
WTF #2?

Why does this make sense?
Intuitively, \(P(B \mid A) \) is the probability that event \(B \) occurs, given that event \(A \) has already occurred

(This is NOT the formal math definition)

\(\text{(A and } B \text{ need not actually occur in temporal order) } \)
Cases where, given that A happens, B also happens.
$A \cap B$
S acts as new sample space ("universe of outcomes where A happens")
acts as new sample space
(“universe of outcomes
where A happens”)

all outcomes where B
happens, in this restricted
space, i.e. given that A is
known to have happened
Thought for the Day #1

If the conditional probability $P(B \mid A)$ is defined as $P(A \cap B) / P(A)$, and $P(A) \neq 0$, then show that (A, Q), where $Q(B) = P(B \mid A)$, is a valid probability space satisfying Kolmogorov's axioms.
Independence of Events

\[P(A \cap B) = P(B \mid A) \ P(A) \]

(by definition)

\[P(A \cap B) = P(B) \ P(A) \]

(if independent)
Independence of Events

In other words, assuming $P(A) \neq 0$, A and B are independent if and only if

$$P(B \mid A) = P(B)$$
Independence of Events

In other words, assuming $P(A) \neq 0$, A and B are independent if and only if

$$P(B \mid A) = P(B)$$

(Intuitively: the probability of B happening is unaffected by whether A is known to have happened)
Independence of Events

In other words, assuming \(P(A) \neq 0 \), \(A \) and \(B \) are independent if and only if

\[
P(B \mid A) = P(B)
\]

(Intuitively: the probability of \(B \) happening is unaffected by whether \(A \) is known to have happened)

(Note: \(A \) and \(B \) can be swapped, if \(P(B) \neq 0 \))
Bayes' Theorem

Assuming $P(A), P(B) \neq 0,$

$$P(A | B) = \frac{P(B | A) P(A)}{P(B)}$$
Bayes' Theorem

Assuming $P(A), P(B) \neq 0$,

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

since $P(A | B) P(B) = P(A \cap B) = P(B | A) P(A)$

(by definition of conditional probability)
Bayes' Theorem

Assuming $P(A), P(B) \neq 0$,

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

since $P(A | B) P(B) = P(A \cap B) = P(B | A) P(A)$

(by definition of conditional probability)
Bayes' Theorem

Assuming $P(A), P(B) \neq 0$, since

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

(by definition of conditional probability)

\begin{align*}
\text{Prior probability of } A \\
\text{Posterior probability of } A, \text{ given evidence } B
\end{align*}
How do we estimate $P(B)$?

- Theorem of Total Probability (special case):

 If $P(A) \neq 0$ or 1,

 $$P(B) = P((B \cap A) \cup (B \cap A'))$$
 $$= P(B \cap A) + P(B \cap A')$$ \hspace{1cm} \text{(Axiom 3)}
 $$= P(B \mid A) P(A) + P(B \mid A') P(A')$$ \hspace{1cm} \text{(Definition of conditional probability)}
Example: Medical Diagnosis

• Suppose:
 – 1 in 1000 people carry a disease, for which there is a pretty reliable test
Example: Medical Diagnosis

• Suppose:
 – 1 in 1000 people carry a disease, for which there is a pretty reliable test
 – Probability of a false negative (carrier tests negative) is 1% (so probability of carrier testing positive is 99%)
Example: Medical Diagnosis

• Suppose:

 – 1 in 1000 people carry a disease, for which there is a pretty reliable test

 – Probability of a false negative (carrier tests negative) is 1% (so probability of carrier testing positive is 99%)

 – Probability of a false positive (non-carrier tests positive) is 5%
Example: Medical Diagnosis

• Suppose:
 – 1 in 1000 people carry a disease, for which there is a pretty reliable test
 – Probability of a false negative (carrier tests negative) is 1% (so probability of carrier testing positive is 99%)
 – Probability of a false positive (non-carrier tests positive) is 5%

• A person just tested positive. What are the chances (s)he is a carrier of the disease?
Example: Medical Diagnosis

- P(Carrier) = 0.001
- P(NotCarrier) = 1 - 0.001 = 0.999
Example: Medical Diagnosis

- **Priors:**
 - \(P(Carrier) = 0.001 \)
 - \(P(NotCarrier) = 1 - 0.001 = 0.999 \)

- **Conditional probabilities:**
 - \(P(Positive \mid Carrier) = 0.99 \)
 - \(P(Positive \mid NotCarrier) = 0.05 \)
Example: Medical Diagnosis

\[P(Carrier \mid Positive) = \frac{P(Positive \mid Carrier) \cdot P(Carrier)}{P(Positive)} \]
(by Bayes' Theorem)
Example: Medical Diagnosis

\[P(\text{Carrier} \mid \text{Positive}) \]

\[= \frac{P(\text{Positive} \mid \text{Carrier}) \ P(\text{Carrier})}{P(\text{Positive})} \]

(by Bayes' Theorem)

\[= \frac{P(\text{Positive} \mid \text{Carrier}) \ P(\text{Carrier})}{P(\text{Positive} \mid \text{Carrier}) \ P(\text{Carrier}) + P(\text{Positive} \mid \text{NotCarrier}) \ P(\text{NotCarrier})} \]

(by Theorem of Total Probability)
Example: Medical Diagnosis

\[
\frac{P(\text{Positive} \mid \text{Carrier}) \cdot P(\text{Carrier})}{P(\text{Positive} \mid \text{Carrier}) \cdot P(\text{Carrier}) + P(\text{Positive} \mid \text{NotCarrier}) \cdot P(\text{NotCarrier})} = \frac{0.99 \times 0.001}{0.99 \times 0.001 + 0.05 \times 0.999} = 0.0194
\]
I used to think correlation implied causation.

Then I took a statistics class. Now I don’t.

Sounds like the class helped. Well, maybe.